Skip to main content

The Roles of Molecular Techniques in the Diagnosis and Management of Follicular Lymphoma

  • Chapter
  • First Online:
Molecular Pathology of Hematolymphoid Diseases

Part of the book series: Molecular Pathology Library ((MPLB,volume 4))

  • 1288 Accesses

Abstract

The first section of this chapter is an overview focused on the practical applications intended for trainees and nonspecialist practitioners. The second section reviews how the parameters assessed in molecular genetic assays reflect the parthenogenesis of follicular lymphoma (FL).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cook JR, Shekhter-Levin S, Swerdlow SH. Utility of routine classical cytogenetic studies in the evaluation of suspected lymphomas: results of 279 consecutive lymph node/extranodal tissue biopsies. Am J Clin Pathol. 2004;121(6):826–835.

    Article  PubMed  Google Scholar 

  2. Janz S, Potter M, Rabkin CS. Lymphoma- and leukemia-associated chromosomal translocations in healthy individuals. Genes Chromosomes Cancer. 2003;36(3):211–223.

    Article  CAS  PubMed  Google Scholar 

  3. Rawstron AC, Bennett FL, O’Connor SJ. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008;359(6):575–583.

    Article  CAS  PubMed  Google Scholar 

  4. Zelenetz AD, Horwitz SM, Kim YH. Non-Hodgkin’s lymphomas. NCCN clinical practice guidelines in oncology. 2008 [cited 3/18/2008]. Available at: http://www.nccn.org/professonals/physician_gls/PDF/nhl.pdf.

  5. Mitelman F, Johansson B, Mertens F. Mitelman database of chromosome aberrations in cancer. 2008 [cited 3/14/2008]. Available at: http://cgap.nci.nih.gov/Chromosomes/Mitelman.

  6. Vaandrager JW, Schuuring E, Raap T, Philippo K, Kleiverda K, Kluin P. Interphase FISH detection of BCL2 rearrangement in follicular lymphoma using breakpoint-flanking probes. Genes Chromosomes Cancer. 2000;27(1):85–94.

    Article  CAS  PubMed  Google Scholar 

  7. Belaud-Rotureau MA, Parrens M, Carrere N. Interphase fluorescence in situ hybridization is more sensitive than BIOMED-2 polymerase chain reaction protocol in detecting IGH-BCL2 rearrangement in both fixed and frozen lymph node with follicular lymphoma. Hum Pathol. 2007;38(2):365–372.

    Article  CAS  PubMed  Google Scholar 

  8. Einerson RR, Kurtin PJ, Dayharsh GA, Kimlinger TK, Remstein ED. FISH is superior to PCR in detecting t(14;18)(q32;q21)-IgH/bcl-2 in follicular lymphoma using paraffin-embedded tissue samples. Am J Clin Pathol. 2005;124(3):421–429.

    Article  CAS  PubMed  Google Scholar 

  9. Espinet B, Bellosillo B, Melero C. FISH is better than BIOMED-2 PCR to detect IgH/BCL2 translocation in follicular lymphoma at diagnosis using paraffin-embedded tissue sections. Leuk Res. 2008;32(5):737–742.

    Article  CAS  PubMed  Google Scholar 

  10. Aster JC, Longtine JA. Detection of BCL2 rearrangements in follicular lymphoma. Am J Pathol. 2002;160(3):759–763.

    CAS  PubMed  Google Scholar 

  11. van Dongen JJ, Langerak AW, Brüggemann M. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 concerted action BMH4-CT98–3936. Leukemia. 2003;17(12):2257–2317.

    Article  PubMed  Google Scholar 

  12. Halldorsdottir AM, Zehnbauer BA, Burack WR. Application of BIOMED-2 clonality assays to formalin-fixed paraffin embedded follicular lymphoma specimens: superior performance of the IGK assays compared to IGH for suboptimal specimens. Leuk Lymphoma. 2007;48(7):1338–1343.

    Article  CAS  PubMed  Google Scholar 

  13. Bende RJ, Smit LA, van Noesel CJ. Molecular pathways in follicular lymphoma. Leukemia. 2007;21(1):18–29.

    Article  CAS  PubMed  Google Scholar 

  14. Küppers R, Klein U, Hansmann ML, Rajewsky K. Cellular origin of human B-cell lymphomas. N Engl J Med. 1999;341(20):1520–1529.

    Article  CAS  PubMed  Google Scholar 

  15. Kuppers R. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer. 2005;5(4):251–262.

    Article  PubMed  Google Scholar 

  16. Margalit O, Amram H, Amariglio N. BCL6 is regulated by p53 through a response element frequently disrupted in B-cell non-Hodgkin lymphoma. Blood. 2006;107(4):1599–1607.

    Article  CAS  PubMed  Google Scholar 

  17. Phan RT, Dalla-Favera R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature. 2004;432(7017):635–639.

    Article  CAS  PubMed  Google Scholar 

  18. Raghavan SC, Swanson PC, Wu X, Hsieh CL, Lieber MR. A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex. Nature. 2004;428(6978):88–93.

    Article  CAS  PubMed  Google Scholar 

  19. Roulland S, Navarro JM, Grenot P. Follicular lymphoma-like B cells in healthy individuals: a novel intermediate step in early lymphomagenesis. J Exp Med. 2006;203(11):2425–2431.

    Article  CAS  PubMed  Google Scholar 

  20. Staudt LM. A closer look at follicular lymphoma. N Engl J Med. 2007;356(7):741–742.

    Article  CAS  PubMed  Google Scholar 

  21. Oeschger S, Bräuninger A, Küppers R, Hansmann ML. Tumor cell dissemination in follicular lymphoma. Blood. 2002;99(6):2192–2198.

    Article  CAS  PubMed  Google Scholar 

  22. Hardianti MS, Tatsumi E, Syampurnawati M. Activation-induced cytidine deaminase expression in follicular lymphoma: association between AID expression and ongoing mutation in FL. Leukemia. 2004;18(4):826–831.

    Article  CAS  PubMed  Google Scholar 

  23. Pasqualucci L, Neumeister P, Goossens T. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature. 2001;412(6844):341–346.

    Article  CAS  PubMed  Google Scholar 

  24. Halldórsdóttir AM, Frühwirth M, Deutsch A. Quantifying the role of aberrant somatic hypermutation in transformation of follicular lymphoma. Leukemia Res. 2008;32(7):1015–1021.

    Article  Google Scholar 

  25. Rossi D, Berra E, Cerri M. Aberrant somatic hypermutation in transformation of follicular lymphoma and chronic lymphocytic leukemia to diffuse large B-cell lymphoma. Haematologica. 2006;91(10):1405–1409.

    CAS  PubMed  Google Scholar 

  26. Höglund M, Sehn L, Connors JM. Identification of cytogenetic subgroups and karyotypic pathways of clonal evolution in follicular lymphomas. Genes Chromosomes Cancer. 2004;39(3):195–204.

    Article  PubMed  Google Scholar 

  27. Cheung KJ, Shah SP, Steidl C. Genome-wide profiling of follicular lymphoma by array comparative genomic hybridization reveals prognostically significant DNA copy number imbalances. Blood. 2009;113(1):137–148.

    Article  CAS  PubMed  Google Scholar 

  28. Ross CW, Ouillette PD, Saddler CM, Shedden KA, Malek SN. Comprehensive analysis of copy number and allele status identifies multiple chromosome defects underlying follicular lymphoma pathogenesis. Clin Cancer Res. 2007;13(16):4777–4785.

    Article  CAS  PubMed  Google Scholar 

  29. Fitzgibbon J, Iqbal S, Davies A. Genome-wide detection of recurring sites of uniparental disomy in follicular and transformed follicular lymphoma. Leukemia. 2007;21(7):1514–1520.

    Article  CAS  PubMed  Google Scholar 

  30. O’Shea D, O’Riain C, Taylor C. The presence of TP53 mutation at diagnosis of follicular lymphoma identifies a high-risk group of patients with shortened time to disease progression and a poorer overall survival. Blood. 2008;112(8):3126–3129.

    Article  PubMed  Google Scholar 

  31. Zhu D, McCarthy H, Ottensmeier CH, Johnson P, Hamblin TJ, Stevenson FK. Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma. Blood. 2002;99(7):2562–2568.

    Article  CAS  PubMed  Google Scholar 

  32. Lenz G, Nagel I, Siebert R. Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell-like diffuse large B cell lymphoma. J Exp Med. 2007;204(3):633–643.

    Article  CAS  PubMed  Google Scholar 

  33. Vaandrager J-W, Schuuring E, Kluin-Nelemans HC, Dyer MJ, Raap AK, Kluin PM. DNA fiber fluorescence in situ hybridization analysis of immunoglobulin class switching in B-cell neoplasia: aberrant CH gene rearrangements in follicle center-cell lymphoma. Blood. 1998;92(8):2871–2878.

    CAS  PubMed  Google Scholar 

  34. Horning SJ, Rosenberg SA. The natural history of initially untreated low-grade non-Hodgkin’s lymphomas. N Engl J Med. 1984;311(23):1471–1475.

    Article  CAS  PubMed  Google Scholar 

  35. Dave SS, Wright G, Tan B. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004;351(21):2159–2169.

    Article  CAS  PubMed  Google Scholar 

  36. Glas AM, Kersten MJ, Delahaye LJ. Gene expression profiling in follicular lymphoma to assess clinical aggressiveness and to guide the choice of treatment. Blood. 2005;105(1):301–307.

    Article  CAS  PubMed  Google Scholar 

  37. Lossos IS, Levy R. Higher grade transformation of follicular lymphoma: phenotypic tumor progression associated with diverse genetic lesions. Semin Cancer Biol. 2003;13(3):191–202.

    Article  CAS  PubMed  Google Scholar 

  38. Lossos IS, Levy R. Higher-grade transformation of follicle center lymphoma is associated with somatic mutation of the 5′ noncoding regulatory region of the BCL-6 gene. Blood. 2000;96(2):635–639.

    CAS  PubMed  Google Scholar 

  39. de Jong D. Molecular pathogenesis of follicular lymphoma: a cross talk of genetic and immunologic factors. J Clin Oncol. 2005;23(26):6358–6363.

    Article  PubMed  Google Scholar 

  40. Horsman DE, Okamoto I, Ludkovski O. Follicular lymphoma lacking the t(14;18)(q32;q21): identification of two disease subtypes. Br J Haematol. 2003;120(3):424–433.

    Article  PubMed  Google Scholar 

  41. Weinberg OK, Ai WZ, Mariappan MR, Shum C, Levy R, Arber DA. “Minor” BCL2 breakpoints in follicular lymphoma: frequency and correlation with grade and disease presentation in 236 cases. J Mol Diagn. 2007;9(4):530–537.

    Article  CAS  PubMed  Google Scholar 

  42. Buchonnet G, Jardin F, Jean N, et al. Distribution of BCL2 breakpoints in follicular lymphoma and correlation with clinical features: specific subtypes or same disease? Leukemia. 2002;16(9):1852–1856.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Burack, W.R. (2010). The Roles of Molecular Techniques in the Diagnosis and Management of Follicular Lymphoma. In: Dunphy, C. (eds) Molecular Pathology of Hematolymphoid Diseases. Molecular Pathology Library, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5698-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5698-9_20

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5697-2

  • Online ISBN: 978-1-4419-5698-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics