Skip to main content

Molecular Pathology of Plasma Cell Neoplasms

  • Chapter
  • First Online:
Molecular Pathology of Hematolymphoid Diseases

Part of the book series: Molecular Pathology Library ((MPLB,volume 4))

  • 1280 Accesses

Abstract

The plasma cell neoplasms are a heterogeneous category of disorders that are defined by a combination of clinical, pathologic, and radiologic criteria and range from the very indolent (monoclonal gammopathy of undetermined significance (MGUS)) to clinically aggressive, overt malignancies (such as plasma cell leukemia). The majority of the molecular pathology literature in plasma cell neoplasms has focused on plasma cell myeloma (PCM). However, the molecular abnormalities identified in PCM are not unique to this disorder, and may also be found in other plasma cell neoplasms, such as plasma cell leukemia or solitary plasmacytomas. For this reason, molecular studies do not assist in the classification of plasma cell neoplasms. Once a diagnosis of PCM is ascertained, however, molecular studies may be very helpful in assessing a patient’s prognosis. Several molecular abnormalities have been shown to be of prognostic significance in patients treated with standard chemotherapy, or with high dose chemotherapy and single or tandem bone marrow (BM) transplants. Through an assessment for the molecular abnormalities described in this chapter, patients with PCM may be divided into those with “high-risk” or “standard-risk” disease, and risk-stratified treatment regimens may therefore be possible. It must be kept in mind, however, that therapeutic regimens for patients with PCM continue to evolve, with the introduction of immunomodulatory agents, such as thalidomide and its derivatives and other novel agents such as bortezomib. Whether the molecular abnormalities described below maintain their prognostic significance in the face of these new therapeutic options remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grogan TM, Van Camp B, Kyle RA, et al. Plasma cell neoplasms. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001:142–156.

    Google Scholar 

  2. Bergsagel PL, Kuehl WM. Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol. 2005;23(26):6333–6338.

    Article  CAS  PubMed  Google Scholar 

  3. Fonseca RE, Blood E, Rue M, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood. 2003;101(11):4569–4575.

    Article  CAS  PubMed  Google Scholar 

  4. Fonseca R, Barlogie B, Bataille R, et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res. 2004;64(4):1546–1558.

    Article  CAS  PubMed  Google Scholar 

  5. Hideshima T, Bergsagel PL, Kuehl WM, et al. Advances in biology of multiple myeloma: clinical applications. Blood. 2004;104(3):607–618.

    Article  CAS  PubMed  Google Scholar 

  6. Zhan F, Huang Y, Colla S, et al. The molecular classification of multiple myeloma. Blood. 2006;108(6):2020–2028.

    Article  CAS  PubMed  Google Scholar 

  7. Fonseca R. Strategies for risk-adapted therapy in myeloma. Hematology Am Soc Hematol Educ Program. 2007;2007:304–310.

    Google Scholar 

  8. Stewart AK, Bergsagel PL, Greipp PR, et al. A practical guide to defining high-risk myeloma for clinical trials, patient counseling and choice of therapy. Leukemia. 2007;21(3):529–534.

    Article  CAS  PubMed  Google Scholar 

  9. Magrangeas F, Lode L, Wuilleme S, et al. Genetic heterogeneity in multiple myeloma. Leukemia. 2005;19(2):191–194.

    Article  CAS  PubMed  Google Scholar 

  10. Fassas AB, Spencer T, Sawyer J, et al. Both hypodiploidy and deletion of chromosome 13 independently confer poor prognosis in multiple myeloma. Br J Haematol. 2002;118(4):1041–1047.

    Article  CAS  PubMed  Google Scholar 

  11. Smadja NV, Bastard C, Brigaudeau C, et al. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood. 2001;98(7):2229–2238.

    Article  CAS  PubMed  Google Scholar 

  12. Liebisch P, Dohner H. Cytogenetics and molecular cytogenetics in multiple myeloma. Eur J Cancer. 2006;42(11):1520–1529.

    Article  CAS  PubMed  Google Scholar 

  13. Avet-Loiseau H, Facon T, Grosbois B, et al. Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation. Blood. 2002;99(6):2185–2191.

    Article  CAS  PubMed  Google Scholar 

  14. Chen Z, Issa B, Huang S, et al. A practical approach to the detection of prognostically significant genomic aberrations in multiple myeloma. J Mol Diagn. 2005;7(5):560–565.

    CAS  PubMed  Google Scholar 

  15. Moreau P, Facon T, Leleu X, et al. Recurrent 14q32 translocations determine the prognosis of multiple myeloma, especially in patients receiving intensive chemotherapy. Blood. 2002;100(5):1579–1583.

    Article  CAS  PubMed  Google Scholar 

  16. Cook JR, Hartke M, Pettay J, et al. Fluorescence in situ hybridi­zation analysis of immunoglobulin heavy chain translocations in plasma cell myeloma using intact paraffin sections and simultaneous CD138 immunofluorescence. J Mol Diagn. 2006;8(4):459–465.

    Article  CAS  PubMed  Google Scholar 

  17. Fonseca R, Debes-Marun CS, Picken EB, et al. The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. Blood. 2003;102(7):2562–2567.

    Article  CAS  PubMed  Google Scholar 

  18. Bergsagel PL, Kuehl WM, Zhan F, et al. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood. 2005;106(1):296–303.

    Article  CAS  PubMed  Google Scholar 

  19. Agnelli L, Bicciato S, Mattioli M, et al. Molecular classification of multiple myeloma: a distinct transcriptional profile characterizes patients expressing CCND1 and negative for 14q32 translocations. J Clin Oncol. 2005;23(29):7296–7306.

    Article  CAS  PubMed  Google Scholar 

  20. Fonseca R, San Miguel J. Prognostic factors and staging in multiple myeloma. Hematol Oncol Clin North Am. 2007;21(6):1115–1140. ix.

    Article  PubMed  Google Scholar 

  21. Avet-Louseau H, Daviet A, Sauner S, et al. Chromosome 13 abnormalities in multiple myeloma are mostly monosomy 13. Br J Haematol. 2000;111(4):1116–1117.

    Article  CAS  PubMed  Google Scholar 

  22. Shaughnessy J, Jr., Tian E, Sawyer J, et al. Prognostic impact of cytogenetic and interphase fluorescence in situ hybridization-defined chromosome 13 deletion in multiple myeloma: early results of total therapy II. Br J Haematol. 2003;120(1):44–52.

    Article  PubMed  Google Scholar 

  23. Zojer N, Konigsberg R, Ackermann J, et al. Deletion of 13q14 remains an independent adverse prognostic variable in multiple myeloma despite its frequent detection by interphase fluorescence in situ hybridization. Blood. 2000;95(6):1925–1930.

    CAS  PubMed  Google Scholar 

  24. Facon T, Avet-Loiseau H, Guillerm G, et al. Chromosome 13 abnormalities identified by FISH analysis and serum beta2-microglobulin produce a powerful myeloma staging system for patients receiving high-dose therapy. Blood. 2001;97(6):1566–1571.

    Article  CAS  PubMed  Google Scholar 

  25. Desikan R, Barlogie B, Sawyer J, et al. Results of high-dose therapy for 1000 patients with multiple myeloma: durable complete remissions and superior survival in the absence of chromosome 13 abnormalities. Blood. 2000;95(12):4008–4010.

    CAS  PubMed  Google Scholar 

  26. Fonseca R, Harrington D, Oken MM, et al. Biological and prognostic significance of interphase fluorescence in situ hybridization detection of chromosome 13 abnormalities (delta13) in multiple myeloma: an eastern cooperative oncology group study. Cancer Res. 2002;62(3):715–720.

    CAS  PubMed  Google Scholar 

  27. Chiecchio L, Protheroe RK, Ibrahim AH, et al. Deletion of chromosome 13 detected by conventional cytogenetics is a critical prognostic factor in myeloma. Leukemia. 2006;20(9):1610–1617.

    Article  CAS  PubMed  Google Scholar 

  28. Dewald GW, Therneau T, Larson D, et al. Relationship of patient survival and chromosome anomalies detected in metaphase and/or interphase cells at diagnosis of myeloma. Blood. 2005;106(10):3553–3558.

    Article  CAS  PubMed  Google Scholar 

  29. Soussi T, Wiman KG. Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell. 2007;12(4):303–312.

    Article  CAS  PubMed  Google Scholar 

  30. Drach J, Ackermann J, Fritz E, et al. Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy. Blood. 1998;92(3):802–809.

    CAS  PubMed  Google Scholar 

  31. Chang H, Qi C, Yi QL, et al. p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation. Blood. 2005;105(1):358–360.

    Article  CAS  PubMed  Google Scholar 

  32. Gertz MA, Lacy MQ, Dispenzieri A, et al. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and −17p13 in myeloma patients treated with high-dose therapy. Blood. 2005;106(8):2837–2840.

    Article  CAS  PubMed  Google Scholar 

  33. Chng WJ, Price-Troska T, Gonzalez-Paz N, et al. Clinical significance of TP53 mutation in myeloma. Leukemia. 2007;21(3):582–584.

    Article  CAS  PubMed  Google Scholar 

  34. Chang H, Yeung J, Qi C, et al. Aberrant nuclear p53 protein expression detected by immunohistochemistry is associated with hemizygous P53 deletion and poor survival for multiple myeloma. Br J Haematol. 2007;138(3):324–329.

    Article  CAS  PubMed  Google Scholar 

  35. Ross FM, Ibrahim AH, Vilain-Holmes A, et al. Age has a profound effect on the incidence and significance of chromosome abnormalities in myeloma. Leukemia. 2005;19(9):1634–1642.

    Article  CAS  PubMed  Google Scholar 

  36. Kaufmann H, Ackermann J, Baldia C, et al. Both IGH translocations and chromosome 13q deletions are early events in monoclonal gammopathy of undetermined significance and do not evolve during transition to multiple myeloma. Leukemia. 2004;18(11):1879–1882.

    Article  CAS  PubMed  Google Scholar 

  37. Shou Y, Martelli ML, Gabrea A, et al. Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proc Natl Acad Sci U S A. 2000;97(1):228–233.

    Article  CAS  PubMed  Google Scholar 

  38. Stewart AK, Fonseca R. Prognostic and therapeutic significance of myeloma genetics and gene expression profiling. J Clin Oncol. 2005;23(26):6339–6344.

    Article  CAS  PubMed  Google Scholar 

  39. Bergsagel PL, Kuehl WM. Chromosome translocations in multiple myeloma. Oncogene. 2001;20(40):5611–5622.

    Article  CAS  PubMed  Google Scholar 

  40. Bergsagel PL, Kuehl WM. Critical roles for immunoglobulin translocations and cyclin D dysregulation in multiple myeloma. Immunol Rev. 2003;194:96–104.

    Article  CAS  PubMed  Google Scholar 

  41. Hoyer JD, Hanson CA, Fonseca R, et al. The (11;14)(q13;q32) translocation in multiple myeloma. A morphologic and immunohistochemical study. Am J Clin Pathol. 2000;113(6):831–837.

    Article  CAS  PubMed  Google Scholar 

  42. Robillard N, Avet-Loiseau H, Garand R, et al. CD20 is associated with a small mature plasma cell morphology and t(11;14) in multiple myeloma. Blood. 2003;102(3):1070–1071.

    Article  CAS  PubMed  Google Scholar 

  43. Cook JR, Hsi ED, Worley S, et al. Immunohistochemistry identifies two cyclin D1 positive subsets of plasma cell myeloma, each associated with favorable survival. Am J Clin Pathol. 2005;125(4):615–624.

    Google Scholar 

  44. Fonseca R, Blood EA, Oken MM, et al. Myeloma and the t(11;14)(q13;q32); evidence for a biologically defined unique subset of patients. Blood. 2002;99(10):3735–3741.

    Article  CAS  PubMed  Google Scholar 

  45. Feyler S, O’Connor SJ, Rawstron AC, et al. IgM myeloma: a rare entity characterized by a CD20-CD56-CD117- immu­nophenotype and the t(11;14). Br J Haematol. 2008;140(5):547–551.

    Article  CAS  PubMed  Google Scholar 

  46. Soverini S, Cavo M, Cellini C, et al. Cyclin D1 overexpression is a favorable prognostic variable for newly diagnosed multiple myeloma patients treated with high-dose chemotherapy and single or double autologous transplantation. Blood. 2003;102(5):1588–1594.

    Article  CAS  PubMed  Google Scholar 

  47. Keats JJ, Reiman T, Belch AR, et al. Ten years and counting: so what do we know about t(4;14)(p16;q32) multiple myeloma. Leuk Lymphoma. 2006;47(11):2289–2300.

    Article  CAS  PubMed  Google Scholar 

  48. Chesi M, Nardini E, Brents LA, et al. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet. 1997;16(3):260–264.

    Article  CAS  PubMed  Google Scholar 

  49. Fonseca R, Oken MM, Greipp PR. The t(4;14)(p16.3;q32) is strongly associated with chromosome 13 abnormalities in both multiple myeloma and monoclonal gammopathy of undetermined significance. Blood. 2001;98(4):1271–1272.

    Article  CAS  PubMed  Google Scholar 

  50. Keats JJ, Reiman T, Maxwell CA, et al. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood. 2003;101(4):1520–1529.

    Article  CAS  PubMed  Google Scholar 

  51. Garand R, Avet-Loiseau H, Accard F, et al. t(11;14) and t(4;14) translocations correlated with mature lymphoplasmacytoid and immature morphology, respectively, in multiple myeloma. Leukemia. 2003;17(10):2032–2035.

    Article  CAS  PubMed  Google Scholar 

  52. Xin X, Abrams TJ, Hollenbach PW, et al. CHIR-258 is efficacious in a newly developed fibroblast growth factor receptor 3-expressing orthotopic multiple myeloma model in mice. Clin Cancer Res. 2006;12(16):4908–4915.

    Article  CAS  PubMed  Google Scholar 

  53. Trudel S, Li ZH, Wei E, et al. CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood. 2005;105(7):2941–2948.

    Article  CAS  PubMed  Google Scholar 

  54. Trudel S, Stewart AK, Rom E, et al. The inhibitory anti-FGFR3 antibody, PRO-001, is cytotoxic to t(4;14) multiple myeloma cells. Blood. 2006;107(10):4039–4046.

    Article  CAS  PubMed  Google Scholar 

  55. Chang H, Stewart AK, Qi XY, et al. Immunohistochemistry accurately predicts FGFR3 aberrant expression and t(4;14) in multiple myeloma. Blood. 2005;106(1):353–355.

    Article  CAS  PubMed  Google Scholar 

  56. Larson A, Cook JR. Fibroblast growth factor receptor 3 (FGFR3) expression in malignant lymphoma. Appl Immunohistochem Mol Morphol. 2008;16(4):322–325.

    Article  CAS  PubMed  Google Scholar 

  57. Boersma-Vreugdenhil GR, Kuipers J, Van Stralen E, et al. The recurrent translocation t(14;20)(q32;q12) in multiple myeloma results in aberrant expression of MAFB: a molecular and genetic analysis of the chromosomal breakpoint. Br J Haematol. 2004;126(3):355–363.

    Article  CAS  PubMed  Google Scholar 

  58. Fabris S, Storlazzi CT, Baldini L, et al. Heterogeneous pattern of chromosomal breakpoints involving the MYC locus in multiple myeloma. Genes Chromosomes Cancer. 2003;37(3):261–269.

    Article  CAS  PubMed  Google Scholar 

  59. Gabrea A, Bergsagel PL, Kuehl WM. Distinguishing primary and secondary translocations in multiple myeloma. DNA Repair. 2006;5:1225–1233.

    Article  CAS  PubMed  Google Scholar 

  60. Yoshida S, Nakazawa N, Iida S, et al. Detection of MUM1/IRF4-IgH fusion in multiple myeloma. Leukemia. 1999;13(11):1812–1816.

    Article  CAS  PubMed  Google Scholar 

  61. Iida S, Rao PH, Butler M, et al. Deregulation of MUM1/IRF4 by chromosomal translocation in multiple myeloma. Nat Genet. 1997;17(2):226–230.

    Article  CAS  PubMed  Google Scholar 

  62. Chang H, Qi X, Trieu Y, et al. Multiple myeloma patients with CKS1B gene amplification have a shorter progression-free survival post-autologous stem cell transplantation. Br J Haematol. 2006;135(4):486–491.

    Article  CAS  PubMed  Google Scholar 

  63. Fonseca R, Van Wier SA, Chng WJ et al. Prognostic value of chromosome 1q21 gain by fluorescent in situ hybridization and increase CKS1B expression in myeloma. Leukemia. 2006;20(11):2034–2040.

    Article  CAS  PubMed  Google Scholar 

  64. Chang H, Ning Y, Qi X, et al. Chromosome 1p21 deletion is a novel prognostic marker in patients with multiple myeloma. Br J Haematol. 2007;139(1):51–54.

    Article  CAS  PubMed  Google Scholar 

  65. Dispenzieri A, Rajkumar SV, Gertz MA, et al. Treatment of newly diagnosed multiple myeloma based on Mayo Stratification of Myeloma and Risk-adapted Therapy (mSMART): consensus statement. Mayo Clin Proc. 2007;82(3):323–341.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cook, J.R. (2010). Molecular Pathology of Plasma Cell Neoplasms. In: Dunphy, C. (eds) Molecular Pathology of Hematolymphoid Diseases. Molecular Pathology Library, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5698-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5698-9_19

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5697-2

  • Online ISBN: 978-1-4419-5698-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics