Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma

  • Patricia Aoun
Chapter
Part of the Molecular Pathology Library book series (MPLB, volume 4)

Abstract

Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) is a clonal lymphoproliferative disorder of morphologically and immunophenotypically mature small B-cells that accumulate in the peripheral blood (PB), bone marrow, lymph nodes, spleen, and other extramedullary sites. In the majority of cases, the neoplastic B-cells exhibit a low mitotic rate and a high resistance to apoptosis. The criteria for diagnosis of chronic lymphocytic leukemia (CLL) have been updated recently by the International Workshop on Chronic Lymphocytic Leukemia. For a diagnosis of CLL, the revised recommendations require the presence of an absolute B-cell lymphocytosis of at least 5.0 × 109/L persisting for greater than 3 months and expressing the characteristic immunophenotype (i.e., CD5+/CD19+/CD20+dim/CD23+/monotypic light chaindim). The clonal B-cells are typically negative (or only weakly positive) for CD79b and FMC7. Cases in which the number of clonal B-cells in the PB is less than 5.0 × 109/L may be diagnosed as CLL if cytopenias or disease-related symptoms are present, or as SLL if lymphadenopathy and/or splenomegaly are present and the diagnosis is confirmed by tissue biopsy.

Keywords

Lymphoma Tyrosine Leukemia Recombination Germinal 

References

  1. 1.
    Muller-Hermelink HK, Montserrat E, Catovsky D, Campo E, Harris NL, Stein H. Chronic lymphocytic leukaemia/small lymphocytic lymphoma. In: Swerdlow SH et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC; 2008:180–182.Google Scholar
  2. 2.
    Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lym­phocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–5456.PubMedCrossRefGoogle Scholar
  3. 3.
    Shim YK, Vogt RF, Middleton D, et al. Prevalence and natural history of monoclonal and polyclonal B-cell lymphocytosis in a residential adult population. Cytometry B Clin Cytom. 2007;72(5):344–353.PubMedGoogle Scholar
  4. 4.
    Rachel JM, Zucker ML, Fox CM, et al. Monoclonal B-cell lymphocytosis in blood donors. Br J Haematol. 2007;139(5):832–836.PubMedCrossRefGoogle Scholar
  5. 5.
    Han T, Ozer H, Gavigan M, et al. Benign monoclonal B cell lymphocytosis – a benign variant of CLL: clinical, immunologic, phenotypic, and cytogenetic studies in 20 patients. Blood. 1984;64(1):244–252.PubMedGoogle Scholar
  6. 6.
    Rawstron AC, Green MJ, Kuzmicki A, et al. Monoclonal B lymphocytes with the characteristics of “indolent” chronic lymphocytic leukemia are present in 3.5% of adults with normal blood counts. Blood. 2002;100(2):635–639.PubMedCrossRefGoogle Scholar
  7. 7.
    Ghia P, Prato G, Scielzo C, et al. Monoclonal CD5+ and CD5- B-lymphocyte expansions are frequent in the peripheral blood of the elderly. Blood. 2004;103(6):2337–2342.PubMedCrossRefGoogle Scholar
  8. 8.
    Nieto WG, Almeida J, Romero A, et al. Increased frequency (12%) of circulating CLL-like B-cell clones in healthy individuals using a high-sensitive multicolor flow cytometry approach. Blood. 2009;114(1):33–37.PubMedCrossRefGoogle Scholar
  9. 9.
    Marti GE, Rawstron AC, Ghia P, et al. Diagnostic criteria for monoclonal B-cell lymphocytosis. Br J Haematol. 2005;130(3):325–332.PubMedCrossRefGoogle Scholar
  10. 10.
    Shanafelt TD, Kay NE, Jenkins G, et al. B-cell count and survival: differentiating chronic lymphocytic leukemia from monoclonal B-cell lymphocytosis based on clinical outcome. Blood. 2009;113(18):4188–4196.PubMedCrossRefGoogle Scholar
  11. 11.
    Rawstron AC, Bennett FL, O’Connor SJ, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008;359(6):575–583.PubMedCrossRefGoogle Scholar
  12. 12.
    Landgren O, Albitar M, Ma W, et al. B-cell clones as early markers for chronic lymphocytic leukemia. N Engl J Med. 2009;360(7):659–667.PubMedCrossRefGoogle Scholar
  13. 13.
    Rozman C, Montserrat E. Chronic lymphocytic leukemia. N Engl J Med. 1995;333(16):1052–1057.PubMedCrossRefGoogle Scholar
  14. 14.
    Rai KR, Sawitsky A, Cronkite EP, Chanana AD, Levy RN, Pasternack BS. Clinical staging of chronic lymphocytic leukemia. Blood. 1975;46(2):219–234.PubMedGoogle Scholar
  15. 15.
    Binet JL, Auquier A, Dighiero G, et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer. 1981;48(1):198–206.PubMedCrossRefGoogle Scholar
  16. 16.
    Linet MS, Van Natta ML, Brookmeyer R, et al. Familial cancer history and chronic lymphocytic leukemia. A case-control study. Am J Epidemiol. 1989;130(4):655–664.PubMedGoogle Scholar
  17. 17.
    Cuttner J. Increased incidence of hematologic malignancies in first-degree relatives of patients with chronic lymphocytic leukemia. Cancer Invest. 1992;10(2):103–109.PubMedCrossRefGoogle Scholar
  18. 18.
    Shah AR, Maeda K, Deegan MJ, Roth MS, Schnitzer B. A clinicopathologic study of familial chronic lymphocytic leukemia. Am J Clin Pathol. 1992;97(2):184–188.PubMedGoogle Scholar
  19. 19.
    Fernhout F, Dinkelaar RB, Hagemeijer A, Groeneveld K, van Kammen E, van Dongen JJ. Four aged siblings with B cell chronic lymphocytic leukemia. Leukemia. 1997;11(12):2060–2065.PubMedCrossRefGoogle Scholar
  20. 20.
    Goldin LR, Sgambati M, Marti GE, Fontaine L, Ishibe N, Caporaso N. Anticipation in familial chronic lymphocytic leukemia. Am J Hum Genet. 1999;65(1):265–269.PubMedCrossRefGoogle Scholar
  21. 21.
    Capalbo S, Trerotoli P, Ciancio A, Battista C, Serio G, Liso V. Increased risk of lymphoproliferative disorders in relatives of patients with B-cell chronic lymphocytic leukemia: relevance of the degree of familial linkage. Eur J Haematol. 2000;65(2):114–117.PubMedCrossRefGoogle Scholar
  22. 22.
    Sakai A, Marti GE, Caporaso N, et al. Analysis of expressed immunoglobulin heavy chain genes in familial B-CLL. Blood. 2000;95(4):1413–1419.PubMedGoogle Scholar
  23. 23.
    Yuille MR, Matutes E, Marossy A, Hilditch B, Catovsky D, Houlston RS. Familial chronic lymphocytic leukaemia: a survey and review of published studies. Br J Haematol. 2000;109(4):794–799.PubMedCrossRefGoogle Scholar
  24. 24.
    Ishibe N, Sgambati MT, Fontaine L, et al. Clinical characteristics of familial B-CLL in the National Cancer Institute Familial Registry. Leuk Lymphoma. 2001;42(1–2):99–108.PubMedCrossRefGoogle Scholar
  25. 25.
    Wiernik PH, Ashwin M, Hu XP, Paietta E, Brown K. Anticipation in familial chronic lymphocytic leukaemia. Br J Haematol. 2001;113(2):407–414.PubMedCrossRefGoogle Scholar
  26. 26.
    Lynch HT, Weisenburger DD, Quinn-Laquer B, Watson P, Lynch JF, Sanger WG. Hereditary chronic lymphocytic leukemia: an extended family study and literature review. Am J Med Genet. 2002;115(3):113–117.PubMedCrossRefGoogle Scholar
  27. 27.
    Rawstron AC, Yuille MR, Fuller J, et al. Inherited predisposition to CLL is detectable as subclinical monoclonal B-lymphocyte expansion. Blood. 2002;100(7):2289–2290.PubMedCrossRefGoogle Scholar
  28. 28.
    Goldin LR, Pfeiffer RM, Li X, Hemminki K. Familial risk of lymphoproliferative tumors in families of patients with chronic lymphocytic leukemia: results from the Swedish Family-Cancer Database. Blood. 2004;104(6):1850–1854.PubMedCrossRefGoogle Scholar
  29. 29.
    Aurran-Schleinitz T, Telford W, Perfetto S, et al. Identification of a new monoclonal B-cell subset in unaffected first-degree relatives in familial chronic lymphocytic leukemia. Leukemia. 2005;19(12):2339–2341.PubMedCrossRefGoogle Scholar
  30. 30.
    Aoun P, Zhou G, Chan WC, et al. Familial B-cell chronic lymphocytic leukemia: analysis of cytogenetic abnormalities, immunophenotypic profiles, and immunoglobulin heavy chain gene usage. Am J Clin Pathol. 2007;127(1):31–38.PubMedCrossRefGoogle Scholar
  31. 31.
    Summersgill B, Thornton P, Atkinson S, et al. Chromosomal imbalances in familial chronic lymphocytic leukaemia: a comparative genomic hybridisation analysis. Leukemia. 2002;16(7):1229–1232.PubMedCrossRefGoogle Scholar
  32. 32.
    Espinet B, Salido M, Hernandez JA, et al. Cytogenetic findings in familial B-cell chronic lymphocytic leukemia: a report of two cases in a family. Cancer Genet Cytogenet. 2003;143(2):172–173.PubMedCrossRefGoogle Scholar
  33. 33.
    Goldin LR, Ishibe N, Sgambati M, et al. A genome scan of 18 families with chronic lymphocytic leukaemia. Br J Haematol. 2003;121(6):866–873.PubMedCrossRefGoogle Scholar
  34. 34.
    Mehes L, Balazs M, Rejto L, Telek B, Kiss A, Udvardy M. Chromosomal aberrations and CD38 expression in two siblings with B-cell chronic lymphocytic leukemia: a report of two siblings. Leuk Lymphoma. 2005;46(3):421–423.PubMedCrossRefGoogle Scholar
  35. 35.
    Marti GE, Carter P, Abbasi F, et al. B-cell monoclonal lymphocytosis and B-cell abnormalities in the setting of familial B-cell chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2003;52(1):1–12.PubMedCrossRefGoogle Scholar
  36. 36.
    Rassenti L, Toy TL, Huynh L, et al. High similarity between familial and sporadic cases of chronic lymphocytic leukemia. Blood. 2003;102:670a.Google Scholar
  37. 37.
    Shen A, Humphries C, Tucker P, Blattner F. Human heavy-chain variable region gene family nonrandomly rearranged in familial chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 1987;84(23):8563–8567.PubMedCrossRefGoogle Scholar
  38. 38.
    Hakim I, Amariglio N, Brok-Simoni F, et al. Preferred usage of specific immunoglobulin gene segments in chronic lymphocytic leukaemia cells of three HLA-identical sisters. Br J Haematol. 1995;91(4):915–917.PubMedCrossRefGoogle Scholar
  39. 39.
    Pritsch O, Troussard X, Magnac C, et al. VH gene usage by family members affected with chronic lymphocytic leukaemia. Br J Haematol. 1999;107(3):616–624.PubMedCrossRefGoogle Scholar
  40. 40.
    de Tute R, Yuille M, Catovsky D, Houlston RS, Hillmen P, Rawstron AC. Monoclonal B-cell lymphocytosis (MBL) in CLL families: substantial increase in relative risk for young adults. Leukemia. 2006;20(4):728–729.PubMedCrossRefGoogle Scholar
  41. 41.
    Juliusson G, Oscier DG, Fitchett M, et al. Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N Engl J Med. 1990;323(11):720–724.PubMedCrossRefGoogle Scholar
  42. 42.
    Juliusson G, Oscier D, Gahrton G. Cytogenetic findings and survival in B-cell chronic lymphocytic leukemia. Second IWCCLL compilation of data on 662 patients. Leuk Lymphoma. 1991;5(Suppl):21–25.CrossRefGoogle Scholar
  43. 43.
    Dohner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–1916.PubMedCrossRefGoogle Scholar
  44. 44.
    Dohner H, Stilgenbauer S, Dohner K, Bentz M, Lichter P. Chromosome aberrations in B-cell chronic lymphocytic leukemia: reassessment based on molecular cytogenetic analysis. J Mol Med. 1999;77(2):266–281.PubMedCrossRefGoogle Scholar
  45. 45.
    Dewald GW, Brockman SR, Paternoster SF, et al. Chromosome anomalies detected by interphase fluorescence in situ hybridization: correlation with significant biological features of B–cell chronic lymphocytic leukaemia. Br J Haematol. 2003;121(2):287–295.PubMedCrossRefGoogle Scholar
  46. 46.
    Aoun P, Blair HE, Smith LM, et al. Fluorescence in situ hybridization detection of cytogenetic abnormalities in B-cell chronic lymphocytic leukemia/small lymphocytic lymphoma. Leuk Lymphoma. 2004;45(8):1595–1603.PubMedCrossRefGoogle Scholar
  47. 47.
    Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99(24):15524–15529.PubMedCrossRefGoogle Scholar
  48. 48.
    Calin GA, Liu CG, Sevignani C, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA. 2004;101(32):11755–11760.PubMedCrossRefGoogle Scholar
  49. 49.
    Calin GA, Ferracin M, Cimmino A, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353(17):1793–1801.PubMedCrossRefGoogle Scholar
  50. 50.
    Pekarsky Y, Santanam U, Cimmino A, et al. Tc11 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 2006;66(24):11590–11593.PubMedCrossRefGoogle Scholar
  51. 51.
    Calin GA, Cimmino A, Fabbri M, et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA. 2008;105(13):5166–5171.PubMedCrossRefGoogle Scholar
  52. 52.
    Calin GA, Trapasso F, Shimizu M, et al. Familial cancer associated with a polymorphism in ARLTS1. N Engl J Med. 2005;352(16):1667–1676.PubMedCrossRefGoogle Scholar
  53. 53.
    Oscier D. Chronic lymphocytic leukaemia. Br J Haematol. 1999;105 Suppl 1:1–3.PubMedGoogle Scholar
  54. 54.
    Hernandez JM, Mecucci C, Criel A, et al. Cytogenetic analysis of B cell chronic lymphoid leukemias classified according to morphologic and immunophenotypic (FAB) criteria. Leukemia. 1995;9(12):2140–2146.PubMedGoogle Scholar
  55. 55.
    Dohner H, Stilgenbauer S, James MR, et al. 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood. 1997;89(7):2516–2522.PubMedGoogle Scholar
  56. 56.
    Neilson JR, Auer R, White D, et al. Deletions at 11q identify a subset of patients with typical CLL who show consistent disease progression and reduced survival. Leukemia. 1997;11(11):1929–1932.PubMedCrossRefGoogle Scholar
  57. 57.
    Austen B, Powell JE, Alvi A, et al. Mutations in the ATM gene lead to impaired overall and treatment-free survival that is independent of IGVH mutation status in patients with B-CLL. Blood. 2005;106(9):3175–3182.PubMedCrossRefGoogle Scholar
  58. 58.
    Dohner H, Fischer K, Bentz M, et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood. 1995;85(6):1580–1589.PubMedGoogle Scholar
  59. 59.
    Dohner H, Stilgenbauer S, Fischer K, Bentz M, Lichter P. Cytogenetic and molecular cytogenetic analysis of B cell chronic lymphocytic leukemia: specific chromosome aberrations identify prognostic subgroups of patients and point to loci of candidate genes. Leukemia. 1997;11 Suppl 2:S19–S24.PubMedGoogle Scholar
  60. 60.
    Lens D, Dyer MJ, Garcia-Marco JM, et al. p53 abnormalities in CLL are associated with excess of prolymphocytes and poor prognosis. Br J Haematol. 1997;99(4):848–857.PubMedCrossRefGoogle Scholar
  61. 61.
    Zenz T, Krober A, Scherer K, et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood. 2008;112(8):3322–3329.PubMedCrossRefGoogle Scholar
  62. 62.
    Rossi D, Cerri M, Deambrogi C, et al. The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of De117p13: implications for overall survival and chemorefractoriness. Clin Cancer Res. 2009;15(3):995–1004.PubMedCrossRefGoogle Scholar
  63. 63.
    Finn WG, Kay NE, Kroft SH, Church S, Peterson LC. Secondary abnormalities of chromosome 6q in B-cell chronic lymphocytic leukemia: a sequential study of karyotypic instability in 51 patients. Am J Hematol. 1998;59(3):223–229.PubMedCrossRefGoogle Scholar
  64. 64.
    Stilgenbauer S, Bullinger L, Benner A, et al. Incidence and clinical significance of 6q deletions in B cell chronic lymphocytic leukemia. Leukemia. 1999;13(9):1331–1334.PubMedCrossRefGoogle Scholar
  65. 65.
    Cuneo A, Rigolin GM, Bigoni R, et al. Chronic lymphocytic leukemia with 6q- shows distinct hematological features and intermediate prognosis. Leukemia. 2004;18(3):476–483.PubMedCrossRefGoogle Scholar
  66. 66.
    Offit K, Louie DC, Parsa NZ, et al. Clinical and morphologic features of B-cell small lymphocytic lymphoma with del(6)(q21q23). Blood. 1994;83(9):2611–2618.PubMedGoogle Scholar
  67. 67.
    Finn WG, Thangavelu M, Yelavarthi KK, et al. Karyotype correlates with peripheral blood morphology and immunophenotype in chronic lymphocytic leukemia. Am J Clin Pathol. 1996;105(4):458–467.PubMedGoogle Scholar
  68. 68.
    Tefferi A, Bartholmai BJ, Witzig TE, et al. Clinical correlations of immunophenotypic variations and the presence of trisomy 12 in B-cell chronic lymphocytic leukemia. Cancer Genet Cytogenet. 1997;95(2):173–177.PubMedCrossRefGoogle Scholar
  69. 69.
    Criel A, Verhoef G, Vlietinck R, et al. Further characterization of morphologically defined typical and atypical CLL: a clinical, immunophenotypic, cytogenetic and prognostic study on 390 cases. Br J Haematol. 1997;97(2):383–391.PubMedCrossRefGoogle Scholar
  70. 70.
    Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94(6):1848–1854.PubMedGoogle Scholar
  71. 71.
    Pittman S, Catovsky D. Prognostic significance of chromosome abnormalities in chronic lymphocytic leukaemia. Br J Haematol. 1984;58(4):649–660.PubMedCrossRefGoogle Scholar
  72. 72.
    Asou H, Takechi M, Tanaka K, et al. Japanese B cell chronic lymphocytic leukaemia: a cytogenetic and molecular biological study. Br J Haematol. 1993;85(3):492–497.PubMedCrossRefGoogle Scholar
  73. 73.
    Cavazzini F, Hernandez JA, Gozzetti A, et al. Chromosome 14q32 translocations involving the immunoglobulin heavy chain locus in chronic lymphocytic leukaemia identify a disease subset with poor prognosis. Br J Haematol. 2008;142(4):529–537.PubMedCrossRefGoogle Scholar
  74. 74.
    Van Den Neste E, Robin V, Francart J, et al. Chromosomal translocations independently predict treatment failure, treatment-free survival and overall survival in B-cell chronic lymphocytic leukemia patients treated with cladribine. Leukemia. 2007;21(8):1715–1722.CrossRefGoogle Scholar
  75. 75.
    Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T. Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia. 2007;21(12):2442–2451.PubMedCrossRefGoogle Scholar
  76. 76.
    Bloomfield CD, Arthur DC, Frizzera G, Levine EG, Peterson BA, Gajl-Peczalska KJ. Nonrandom chromosome abnormalities in lymphoma. Cancer Res. 1983;43(6):2975–2984.PubMedGoogle Scholar
  77. 77.
    Ueshima Y, Bird ML, Vardiman JW, Rowley JD. A 14;19 translocation in B-cell chronic lymphocytic leukemia: a new recurring chromosome aberration. Int J Cancer. 1985;36(3):287–290.PubMedGoogle Scholar
  78. 78.
    Michaux L, Dierlamm J, Wlodarska I, Bours V, Van den Berghe H, Hagemeijer A. t(14;19)/BCL3 rearrangements in lymphoproliferative disorders: a review of 23 cases. Cancer Genet Cytogenet. 1997;94(1):36–43.PubMedCrossRefGoogle Scholar
  79. 79.
    McKeithan TW, Takimoto GS, Ohno H, et al. BCL3 rearrangements and t(14;19) in chronic lymphocytic leukemia and other B-cell malignancies: a molecular and cytogenetic study. Genes Chromosomes Cancer. 1997;20(1):64–72.PubMedCrossRefGoogle Scholar
  80. 80.
    Au WY, Horsman DE, Ohno H, Klasa RJ, Gascoyne RD. Bcl-3/IgH translocation (14;19)(q32;q13) in non-Hodgkin’s lymphomas. Leuk Lymphoma. 2002;43(4):813–816.PubMedCrossRefGoogle Scholar
  81. 81.
    Huh YO, Abruzzo LV, Rassidakis GZ, et al. The t(14;19)(q32;q13)-positive small B-cell leukaemia: a clinicopathologic and cytogenetic study of seven cases. Br J Haematol. 2007;136(2):220–228.PubMedCrossRefGoogle Scholar
  82. 82.
    Satterwhite E, Sonoki T, Willis TG, et al. The BCL11 gene family: involvement of BCL11A in lymphoid malignancies. Blood. 2001;98(12):3413–3420.PubMedCrossRefGoogle Scholar
  83. 83.
    Kuppers R, Sonoki T, Satterwhite E, et al. Lack of somatic hypermutation of IG V(H) genes in lymphoid malignancies with t(2;14)(p13;q32) translocation involving the BCL11A gene. Leukemia. 2002;16(5):937–939.PubMedCrossRefGoogle Scholar
  84. 84.
    Yin CC, Lin KI, Ketterling RP, et al. Chronic lymphocytic leukemia with t(2;14)(p16;q32) involves the BCL11A and IgH genes and is associated with atypical morphologic features and unmutated IgVH genes. Am J Clin Pathol. 2009;131(5):663–670.PubMedCrossRefGoogle Scholar
  85. 85.
    Fais F, Ghiotto F, Hashimoto S, et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest. 1998;102(8):1515–1525.PubMedCrossRefGoogle Scholar
  86. 86.
    Damle RN, Wasil T, Fais F, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94(6):1840–1847.PubMedGoogle Scholar
  87. 87.
    Ghia P, Stamatopoulos K, Belessi C, et al. ERIC recommen­dations on IGHV gene mutational status analysis in chronic lymphocytic leukemia. Leukemia. 2007;21(1):1–3.PubMedCrossRefGoogle Scholar
  88. 88.
    Hamblin TJ, Orchard JA, Ibbotson RE, et al. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood. 2002;99(3):1023–1029.PubMedCrossRefGoogle Scholar
  89. 89.
    Klein U, Tu Y, Stolovitzky GA, et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med. 2001;194(11):1625–1638.PubMedCrossRefGoogle Scholar
  90. 90.
    Rosenwald A, Alizadeh AA, Widhopf G, et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med. 2001;194(11):1639–1647.PubMedCrossRefGoogle Scholar
  91. 91.
    Crespo M, Bosch F, Villamor N, et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med. 2003;348(18):1764–1775.PubMedCrossRefGoogle Scholar
  92. 92.
    Durig J, Nuckel H, Cremer M, et al. ZAP-70 expression is a prognostic factor in chronic lymphocytic leukemia. Leukemia. 2003;17(12):2426–2434.PubMedCrossRefGoogle Scholar
  93. 93.
    Wiestner A, Rosenwald A, Barry TS, et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood. 2003;101(12):4944–4951.PubMedCrossRefGoogle Scholar
  94. 94.
    Kim SZ, Chow KU, Kukoc-Zivojnov N, et al. Expression of ZAP-70 protein correlates with disease stage in chronic lymphocytic leukemia and is associated with, but not generally restricted to, non-mutated Ig VH status. Leuk Lymphoma. 2004;45(10):2037–2045.PubMedCrossRefGoogle Scholar
  95. 95.
    Orchard JA, Ibbotson RE, Davis Z, et al. ZAP-70 expression and prognosis in chronic lymphocytic leukaemia. Lancet. 2004;363(9403):105–111.PubMedCrossRefGoogle Scholar
  96. 96.
    Rassenti LZ, Huynh L, Toy TL, et al. ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med. 2004;351(9):893–901.PubMedCrossRefGoogle Scholar
  97. 97.
    Schroers R, Griesinger F, Trumper L, et al. Combined analysis of ZAP-70 and CD38 expression as a predictor of disease progression in B-cell chronic lymphocytic leukemia. Leukemia. 2005;19(5):750–758.PubMedCrossRefGoogle Scholar
  98. 98.
    Nolz JC, Tschumper RC, Pittner BT, Darce JR, Kay NE, Jelinek DF. ZAP-70 is expressed by a subset of normal human B-lymphocytes displaying an activated phenotype. Leukemia. 2005;19(6):1018–1024.PubMedCrossRefGoogle Scholar
  99. 99.
    Scielzo C, Camporeale A, Geuna M, et al. ZAP-70 is expressed by normal and malignant human B-cell subsets of different maturational stage. Leukemia. 2006;20(4):689–695.PubMedCrossRefGoogle Scholar
  100. 100.
    Cutrona G, Colombo M, Matis S, et al. B lymphocytes in humans express ZAP-70 when activated in vivo. Eur J Immunol. 2006;36(3):558–569.PubMedCrossRefGoogle Scholar
  101. 101.
    Davis BH, Schwartz M. ZAP-70 expression is low in normal precursor B cells or hematogones. Cytometry B Clin Cytom. 2006;70(4):315–319.PubMedGoogle Scholar
  102. 102.
    Krober A, Bloehdorn J, Hafner S, et al. Additional genetic high-risk features such as 11q deletion, 17p deletion, and V3-21 usage characterize discordance of ZAP-70 and VH mutation status in chronic lymphocytic leukemia. J Clin Oncol. 2006;24(6):969–975.PubMedCrossRefGoogle Scholar
  103. 103.
    Thorselius M, Krober A, Murray F, et al. Strikingly homologous immunoglobulin gene rearrangements and poor outcome in VH3-21-using chronic lymphocytic leukemia patients independent of geographic origin and mutational status. Blood. 2006;107(7):2889–2894.PubMedCrossRefGoogle Scholar
  104. 104.
    Kienle D, Benner A, Krober A, et al. Distinct gene expression patterns in chronic lymphocytic leukemia defined by usage of specific VH genes. Blood. 2006;107(5):2090–2093.PubMedCrossRefGoogle Scholar
  105. 105.
    Kay S, Herishanu Y, Pick M, et al. Quantitative flow cytometry of ZAP-70 levels in chronic lymphocytic leukemia using molecules of equivalent soluble fluorochrome. Cytometry B Clin Cytom. 2006;70(4):218–226.PubMedGoogle Scholar
  106. 106.
    Bakke AC, Purtzer Z, Leis J, Huang J. A robust ratio metric method for analysis of Zap-70 expression in chronic lymphocytic leukemia (CLL). Cytometry B Clin Cytom. 2006;70(4):227–234.PubMedGoogle Scholar
  107. 107.
    Wilhelm C, Neubauer A, Brendel C. Discordant results of low cytometric ZAP-70 expression status in B-CLL samples if different gating strategies are applied. Cytometry B Clin Cytom. 2006;70(4):242–250.PubMedGoogle Scholar
  108. 108.
    Shenkin M, Maiese R. Use of a blocking antibody method for the flow cytometric measurement of ZAP-70 in B-CLL. Cytometry B Clin Cytom. 2006;70(4):251–258.PubMedGoogle Scholar
  109. 109.
    Shankey TV, Forman M, Scibelli P, et al. An optimized whole blood method for flow cytometric measurement of ZAP-70 protein expression in chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2006;70(4):259–269.PubMedGoogle Scholar
  110. 110.
    Shults KE, Miller DT, Davis BH, Flye L, Hobbs LA, Stelzer GT. A standardized ZAP-70 assay – lessons learned in the trenches. Cytometry B Clin Cytom. 2006;70(4):276–283.PubMedGoogle Scholar
  111. 111.
    Bojarska-Junak A, Giannopoulos K, Kowal M, Dmoszynska A, Rolinski J. Comparison of methods for determining zeta-chain associated protein-70 (ZAP-70) expression in patients with B-cell chronic lymphocytic leukemia (B-CLL). Cytometry B Clin Cytom. 2006;70(4):293–301.PubMedGoogle Scholar
  112. 112.
    Letestu R, Rawstron A, Ghia P, et al. Evaluation of ZAP-70 expression by flow cytometry in chronic lymphocytic leukemia: a multicentric international harmonization process. Cytometry B Clin Cytom. 2006;70(4):309–314.PubMedGoogle Scholar
  113. 113.
    Van Bockstaele F, Janssens A, Piette A, et al. Kolmogorov-Smirnov statistical test for analysis of ZAP-70 expression in B-CLL, compared with quantitative PCR and IgV(H) mutation status. Cytometry B Clin Cytom. 2006;70(4):302–308.PubMedGoogle Scholar
  114. 114.
    Oppezzo P, Vuillier F, Vasconcelos Y, et al. Chronic lymphocytic leukemia B cells expressing AID display dissociation between class switch recombination and somatic hypermutation. Blood. 2003;101(10):4029–4032.PubMedCrossRefGoogle Scholar
  115. 115.
    Albesiano E, Messmer BT, Damle RN, Allen SL, Rai KR, Chiorazzi N. Activation-induced cytidine deaminase in chronic lymphocytic leukemia B cells: expression as multiple forms in a dynamic, variably sized fraction of the clone. Blood. 2003;102(9):3333–3339.PubMedCrossRefGoogle Scholar
  116. 116.
    McCarthy H, Wierda WG, Barron LL, et al. High expression of activation-induced cytidine deaminase (AID) and splice variants is a distinctive feature of poor-prognosis chronic lymphocytic leukemia. Blood. 2003;101(12):4903–4908.PubMedCrossRefGoogle Scholar
  117. 117.
    Heintel D, Kroemer E, Kienle D, et al. High expression of activation-induced cytidine deaminase (AID) mRNA is associated with unmutated IGVH gene status and unfavourable cytogenetic aberrations in patients with chronic lymphocytic leukaemia. Leukemia. 2004;18(4):756–762.PubMedCrossRefGoogle Scholar
  118. 118.
    Oscier DG, Thompsett A, Zhu D, Stevenson FK. Differential rates of somatic hypermutation in V(H) genes among subsets of chronic lymphocytic leukemia defined by chromosomal abnormalities. Blood. 1997;89(11):4153–4160.PubMedGoogle Scholar
  119. 119.
    Krober A, Seiler T, Benner A, et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood. 2002;100(4):1410–1416.PubMedGoogle Scholar
  120. 120.
    Johnson TA, Rassenti LZ, Kipps TJ. Ig VH1 genes expressed in B cell chronic lymphocytic leukemia exhibit distinctive molecular features. J Immunol. 1997;158(1):235–246.PubMedGoogle Scholar
  121. 121.
    Tobin G, Thunberg U, Johnson A, et al. Somatically mutated Ig V(H)3-21 genes characterize a new subset of chronic lymphocytic leukemia. Blood. 2002;99(6):2262–2264.PubMedCrossRefGoogle Scholar
  122. 122.
    Tobin G, Thunberg U, Karlsson K, et al. Subsets with restricted immunoglobulin gene rearrangement features indicate a role for antigen selection in the development of chronic lymphocytic leukemia. Blood. 2004;104(9):2879–2885.PubMedCrossRefGoogle Scholar
  123. 123.
    Mauerer K, Zahrieh D, Gorgun G, et al. Immunoglobulin gene segment usage, location and immunogenicity in mutated and unmutated chronic lymphocytic leukaemia. Br J Haematol. 2005;129(4):499–510.PubMedCrossRefGoogle Scholar
  124. 124.
    Bomben R, Dal Bo M, Capello D, et al. Comprehensive characterization of IGHV3-21-expressing B-cell chronic lymphocytic leukemia: an Italian multicenter study. Blood. 2007;109(7):2989–2998.PubMedGoogle Scholar
  125. 125.
    Ghia EM, Jain S, Widhopf GF, 2nd, et al. Use of IGHV3-21 in chronic lymphocytic leukemia is associated with high-risk disease and reflects antigen-driven, post-germinal center leukemogenic selection. Blood. 2008;111(10):5101–5108.PubMedCrossRefGoogle Scholar
  126. 126.
    Belessi CJ, Davi FB, Stamatopoulos KE, et al. IGHV gene insertions and deletions in chronic lymphocytic leukemia: “CLL-biased” deletions in a subset of cases with stereotyped receptors. Eur J Immunol. 2006;36(7):1963–1974.PubMedCrossRefGoogle Scholar
  127. 127.
    Stamatopoulos K, Belessi C, Moreno C, et al. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: pathogenetic implications and clinical correlations. Blood. 2007;109(1):259–270.PubMedCrossRefGoogle Scholar
  128. 128.
    Murray F, Darzentas N, Hadzidimitriou A, et al. Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: implications for the role of antigen selection in leukemogenesis. Blood. 2008;111(3):1524–1533.PubMedCrossRefGoogle Scholar
  129. 129.
    Ghia P, Stamatopoulos K, Belessi C, et al. Geographic patterns and pathogenetic implications of IGHV gene usage in chronic lymphocytic leukemia: the lesson of the IGHV3-21 gene. Blood. 2005;105(4):1678–1685.PubMedCrossRefGoogle Scholar
  130. 130.
    Stamatopoulos K, Belessi C, Hadzidimitriou A, et al. Immuno­globulin light chain repertoire in chronic lymphocytic leukemia. Blood. 2005;106(10):3575–3583.PubMedCrossRefGoogle Scholar
  131. 131.
    Efremov DG, Gobessi S, Longo PG. Signaling pathways activated by antigen-receptor engagement in chronic lymphocytic leukemia B-cells. Autoimmun Rev. 2007;7(2):102–108.PubMedCrossRefGoogle Scholar
  132. 132.
    Longo PG, Laurenti L, Gobessi S, Sica S, Leone G, Efremov DG. The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood. 2008;111(2):846–855.PubMedCrossRefGoogle Scholar
  133. 133.
    Wahlfors J, Hiltunen H, Heinonen K, Hamalainen E, Alhonen L, Janne J. Genomic hypomethylation in human chronic lymphocytic leukemia. Blood. 1992;80(8):2074–2080.PubMedGoogle Scholar
  134. 134.
    Lyko F, Stach D, Brenner A, et al. Quantitative analysis of DNA methylation in chronic lymphocytic leukemia patients. Electrophoresis. 2004;25(10–11):1530–1535.PubMedCrossRefGoogle Scholar
  135. 135.
    Yu MK, Bergonia H, Szabo A, Phillips JD. Progressive disease in chronic lymphocytic leukemia is correlated with the DNA methylation index. Leuk Res. 2007;31(6):773–777.PubMedCrossRefGoogle Scholar
  136. 136.
    Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC. bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood. 1993;82(6):1820–1828.PubMedGoogle Scholar
  137. 137.
    Yuille MR, Condie A, Stone EM, et al. TCL1 is activated by chromosomal rearrangement or by hypomethylation. Genes Chromosomes Cancer. 2001;30(4):336–341.PubMedCrossRefGoogle Scholar
  138. 138.
    Pinyol M, Cobo F, Bea S, et al. p16(INK4a) gene inactivation by deletions, mutations, and hypermethylation is associated with transformed and aggressive variants of non-Hodgkin’s lymphomas. Blood. 1998;91(8):2977–2984.PubMedGoogle Scholar
  139. 139.
    Fulop Z, Csernus B, Timar B, Szepesi A, Matolcsy A. Microsatellite instability and hMLH1 promoter hypermethylation in Richter’s transformation of chronic lymphocytic leukemia. Leukemia. 2003;17(2):411–415.PubMedCrossRefGoogle Scholar
  140. 140.
    Corcoran M, Parker A, Orchard J, et al. ZAP-70 methylation status is associated with ZAP-70 expression status in chronic lymphocytic leukemia. Haematologica. 2005;90(8):1078–1088.PubMedGoogle Scholar
  141. 141.
    Raval A, Lucas DM, Matkovic JJ, et al. TWIST2 demonstrates differential methylation in immunoglobulin variable heavy chain mutated and unmutated chronic lymphocytic leukemia. J Clin Oncol. 2005;23(17):3877–3885.PubMedCrossRefGoogle Scholar
  142. 142.
    Chim CS, Fung TK, Wong KF, Lau JS, Liang R. Infrequent Wnt inhibitory factor-1 (Wif-1) methylation in chronic lymphocytic leukemia. Leuk Res. 2006;30(9):1135–1139.PubMedCrossRefGoogle Scholar
  143. 143.
    Chim CS, Fung TK, Wong KF, Lau JS, Liang R. Frequent DAP kinase but not p14 or Apaf-1 hypermethylation in B-cell chronic lymphocytic leukemia. J Hum Genet. 2006;51(9):832–838.PubMedCrossRefGoogle Scholar
  144. 144.
    Liu TH, Raval A, Chen SS, Matkovic JJ, Byrd JC, Plass C. CpG island methylation and expression of the secreted frizzled-related protein gene family in chronic lymphocytic leukemia. Cancer Res. 2006;66(2):653–658.PubMedCrossRefGoogle Scholar
  145. 145.
    Tsirigotis P, Pappa V, Labropoulos S, et al. Mutational and methylation analysis of the cyclin-dependent kinase 4 inhibitor (p16INK4A) gene in chronic lymphocytic leukemia. Eur J Haematol. 2006;76(3):230–236.PubMedCrossRefGoogle Scholar
  146. 146.
    Motiwala T, Majumder S, Kutay H, et al. Methylation and silencing of protein tyrosine phosphatase receptor type O in chronic lymphocytic leukemia. Clin Cancer Res. 2007;13(11):3174–3181.PubMedCrossRefGoogle Scholar
  147. 147.
    Seeliger B, Wilop S, Osieka R, Galm O, Jost E. CpG island methylation patterns in chronic lymphocytic leukemia. Leuk Lymphoma. 2009;50(3):419–426.PubMedCrossRefGoogle Scholar
  148. 148.
    Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–269.PubMedCrossRefGoogle Scholar
  149. 149.
    Nicoloso MS, Kipps TJ, Croce CM, Calin GA. MicroRNAs in the pathogeny of chronic lymphocytic leukaemia. Br J Haematol. 2007;139(5):709–716.PubMedCrossRefGoogle Scholar
  150. 150.
    Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102(39):13944–13949.PubMedCrossRefGoogle Scholar
  151. 151.
    Marton S, Garcia MR, Robello C, et al. Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis. Leukemia. 2008;22(2):330–338.PubMedCrossRefGoogle Scholar
  152. 152.
    Fulci V, Chiaretti S, Goldoni M, et al. Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood. 2007;109(11):4944–4951.PubMedCrossRefGoogle Scholar
  153. 153.
    Wang M, Tan LP, Dijkstra MK, et al. miRNA analysis in B-cell chronic lymphocytic leukaemia: proliferation centres characterized by low miR-150 and high BIC/miR-155 expression. J Pathol. 2008;215(1):13–20.PubMedCrossRefGoogle Scholar
  154. 154.
    Stamatopoulos B, Meuleman N, Haibe-Kains B, et al. microRNA-29c and microRNA-223 down-regulation has in vivo significance in chronic lymphocytic leukemia and improves disease risk stratification. Blood. 2009;113(21):5237–5245.PubMedCrossRefGoogle Scholar
  155. 155.
    Mott JL, Kobayashi S, Bronk SF, Gores GJ. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene. 2007;26(42):6133–6140.PubMedCrossRefGoogle Scholar
  156. 156.
    Mraz M, Pospisilova S, Malinova K, Slapak I, Mayer J. MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes. Leuk Lymphoma. 2009;50(3):506–509.PubMedCrossRefGoogle Scholar
  157. 157.
    Zenz T, Mohr J, Eldering E, et al. miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood. 2009;113(16):3801–3808.PubMedCrossRefGoogle Scholar
  158. 158.
    Chemotherapeutic options in chronic lymphocytic leukemia: a meta-analysis of the randomized trials. CLL Trialists’ Collaborative Group. J Natl Cancer Inst. 1999;91(10):861-868.Google Scholar
  159. 159.
    Grever MR, Lucas DM, Dewald GW, et al. Comprehensive assessment of genetic and molecular features predicting outcome in patients with chronic lymphocytic leukemia: results from the US Intergroup Phase III Trial E2997. J Clin Oncol. 2007;25(7):799–804.PubMedCrossRefGoogle Scholar
  160. 160.
    Catovsky D, Richards S, Matutes E, et al. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial. Lancet. 2007;370(9583):230–239.PubMedCrossRefGoogle Scholar
  161. 161.
    Tam CS, O’Brien S, Wierda W, et al. Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood. 2008;112(4):975–980.PubMedCrossRefGoogle Scholar
  162. 162.
    Byrd JC, Gribben JG, Peterson BL, et al. Select high-risk genetic features predict earlier progression following chemoimmunotherapy with fludarabine and rituximab in chronic lymphocytic leukemia: justification for risk-adapted therapy. J Clin Oncol. 2006;24(3):437–443.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Patricia Aoun
    • 1
  1. 1.Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations