Skip to main content

Discretization of Gradient Elasticity Problems Using C 1 Finite Elements

  • Chapter
  • First Online:

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 21))

Abstract

Strain-gradient theories have been used to model a variety of problems (such as elastic deformation, fracture behavior and plasticity) where size effect is of importance. Their use with the finite element method, however, has the drawback that specially designed elements are needed to obtain correct results.

This work presents an overview of the use of elements with C 1 continuous interpolation for strain-gradient models, using gradient elasticity as an example. After showing how the C 1 requirement arises and giving details concerning the implementation of specific elements, a theoretical comparison is made between elements based on this approach and elements resulting from the use of some alternative formulations.

I. Vardoulakis (March 22nd, 1949 – September 19th, 2009), Formerly at the National Technical University of Athens, Greece.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amanatidou, E., Aravas, N.: Mixed finite element formulations of strain-gradient elasticity problems. Comput. Methods Appl. Mech. Eng. 191, 1723–1751 (2002). doi:10.1016/S0045-7825(01)00353-X

    Article  MATH  Google Scholar 

  2. Argyris, J.H., Fried, I., Scharpf, D.W.: The TUBA family of plate elements for the matrix displacement method. Aeronaut. J. R. Aeronaut. Soc. 72, 701–709 (1968)

    Google Scholar 

  3. Askes, H., Aifantis, E.C.: Numerical modelling of size effects with gradient elasticity—formulation, meshless discretization and examples. Int. J. Fract. 117(4), 347–358 (2002). doi:10.1023/A:1022225526483

    Article  Google Scholar 

  4. Askes, H., Gutiérrez, M.A.: Implicit gradient elasticity. Int. J. Numer. Methods Eng. 67(3), 400–416 (2006). doi:10.1002/nme.1640

    Article  MATH  Google Scholar 

  5. Chambon, R., Caillerie, D., El Hassan, N.: One-dimensional localisation studied with a second grade model. Eur. J. Mech. A, Solids 17(4), 637–656 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dasgupta, S., Sengupta, D.: A higher-order triangular plate bending element revisited. Int. J. Numer. Methods Eng. 30, 419–430 (1990). doi:10.1002/nme.1620300303

    Article  MATH  Google Scholar 

  7. Matsushima, T., Chambon, R., Caillerie, D.: Large strain finite element analysis of a local second gradient model: application to localization. Int. J. Numer. Methods Eng. 54, 499–521 (2002). doi:10.1002/nme.433

    Article  MATH  MathSciNet  Google Scholar 

  8. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964). doi:10.1007/BF00248490

    Article  MATH  MathSciNet  Google Scholar 

  9. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968). doi:10.1016/0020-7683(68)90036-X

    Article  MATH  Google Scholar 

  10. Papanicolopulos, S.A., Zervos, A.: Numerical solution of crack problems in gradient elasticity. Eng. Comput. Mech. (2009, accepted)

    Google Scholar 

  11. Papanicolopulos, S.A., Zervos, A., Vardoulakis, I.: A three dimensional C 1 finite element for gradient elasticity. Int. J. Numer. Methods Eng. 77(10), 1396–1415 (2009). doi:10.1002/nme.2449

    Article  MATH  MathSciNet  Google Scholar 

  12. Petera, J., Pittman, J.F.T.: Isoparametric Hermite elements. Int. J. Numer. Methods Eng. 37(20), 3489–3519 (1994). doi:10.1002/nme.1620372006

    Article  MATH  MathSciNet  Google Scholar 

  13. Shu, J.Y., King, W.E., Fleck, N.A.: Finite elements for materials with strain gradient effects. Int. J. Numer. Methods Eng. 44(3), 373–391 (1999). doi:10.1002/(SICI)1097-0207(19990130)44:3<373::AID-NME508>3.0.CO;2-7

    Article  MATH  Google Scholar 

  14. Toupin, R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962). doi:10.1007/BF00253945

    Article  MATH  MathSciNet  Google Scholar 

  15. Zervos, A.: Finite elements for elasticity with microstructure and gradient elasticity. Int. J. Numer. Methods Eng. 73(4), 564–595 (2008). doi:10.1002/nme.2093

    Article  MATH  MathSciNet  Google Scholar 

  16. Zervos, A., Papanastasiou, P., Vardoulakis, I.: A finite element displacement formulation for gradient elastoplasticity. Int. J. Numer. Methods Eng. 50(6), 1369–1388 (2001). doi:10.1002/1097-0207(20010228)50:6<1369::AID-NME72>3.0.CO;2-K

    Article  MATH  Google Scholar 

  17. Zervos, A., Papanastasiou, P., Vardoulakis, I.: Modelling of localisation and scale effect in thick-walled cylinders with gradient elastoplasticity. Int. J. Solids Struct. 38(30–31), 5081–5095 (2001)

    Article  MATH  Google Scholar 

  18. Zervos, A., Papanicolopulos, S.A., Vardoulakis, I.: Two finite element discretizations for gradient elasticity. J. Eng. Mech. ASCE 135(3), 203–213 (2009). doi:10.1061/(ASCE)0733-9399(2009)135:3(203)

    Article  Google Scholar 

  19. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, 4th edn. McGraw-Hill, New York (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanos-Aldo Papanicolopulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Papanicolopulos, SA., Zervos, A., Vardoulakis, I. (2010). Discretization of Gradient Elasticity Problems Using C 1 Finite Elements. In: Maugin, G., Metrikine, A. (eds) Mechanics of Generalized Continua. Advances in Mechanics and Mathematics, vol 21. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5695-8_28

Download citation

Publish with us

Policies and ethics