Skip to main content

Phase Shifts in Monaural Field Potentials of the Medial Superior Olive

  • Conference paper
  • First Online:
The Neurophysiological Bases of Auditory Perception

Abstract

Jeffress (J Comp Physiol Psychol 41:35-39, 1948) proposed that external interaural time differences (ITDs) are compensated by internal, axonal delays allowing ITD to be represented by a population of coincidence detectors in the medial superior olive (MSO). The MSO shows a strong extracellular field potential: the neurophonic. Studies in the barn owl reported a phase shift in the neurophonic along the nucleus laminaris and concluded that this phase shift is consistent with axonal delay lines as proposed by Jeffress. We recorded the neurophonic in the MSO of the cat at various locations along its short, dendritic axis. A phase shift of about 0.5 cycles was observed at depths close to the amplitude maxima, sometimes accompanied by localized amplitude minima. Current source density analysis for contralateral (ipsilateral) stimulation shows a current source close to a neurophonic amplitude maximum and a sink 100 μm ventromedially (dorsolaterally). These results indicate that some of the features of the neurophonic may be caused by a dipole field. Contralateral (ipsilateral) excitation causes a current sink at the ventromedial (dorsolateral) dendrites and a source at the soma and dorsolateral (ventromedial) dendrites. The difference in phase at the sink and source is 0.5 cycles, which closely resembles the phase shift that has been reported in the barn owl. Our interpretation in terms of a dipole field raises the question whether the neurophonic phase shift reported in the barn owl reflects axonal delays or simply a nucleus laminaris dipole configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JC, Mugnaini E (1990) Immunocytochemical evidence for inhibitory and disinhibitory circuits in the superior olive. Hear Res 49:281–298

    Article  PubMed  CAS  Google Scholar 

  • Biedenbach MA, Freeman WJ (1964) Click-evoked potential map from the superior olivary nucleus. Am J Physiol 206:1408–1414

    PubMed  CAS  Google Scholar 

  • Bojanowski T, Hu K, Schwarz DW (1989) Analogue signal representation in the medial superior olive of the cat. J Otolaryngol 18:3–9

    PubMed  CAS  Google Scholar 

  • Boudreau JC (1965) Stimulus correlates of wave activity in the superior-olivary complex of the cat. J Acoust Soc Am 37:779–785

    Article  PubMed  CAS  Google Scholar 

  • Cant NB, Hyson RL (1992) Projections from the lateral nucleus of the trapezoid body to the medial superior olivary nucleus in the gerbil. Hear Res 58:26–34

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brain stem of the barn owl. J Neurosci 10:3227–3246

    PubMed  CAS  Google Scholar 

  • Freeman JA, Nicholson C (1975) Experimental optimization of current source-density technique for anuran cerebellum. J Neurophysiol 38:369–382

    PubMed  CAS  Google Scholar 

  • Galambos R, Schwartzkopff J, Rupert A (1959) Microelectrode study of superior olivary nuclei. Am J Physiol 197:527–536

    PubMed  CAS  Google Scholar 

  • Guinan JJ, Norris BE, Guinan SS (1972) Single auditory units in the superior olivary complex. II: Locations of unit categories and tonotopic organization. Int J Neurosci 4:147–166

    Article  Google Scholar 

  • Helfert RH, Bonneau JM, Wenthold RJ, Altschuler RA (1989) GABA and glycine immunoreactivity in the guinea pig superior olivary complex. Brain Res 501:269–286

    Article  PubMed  CAS  Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39

    Article  PubMed  CAS  Google Scholar 

  • Joris PX, Carney LHC, Smith PH, Yin TCT (1994) Enhancement of synchronization in the anteroventral cochlear nucleus. I. Responses to tonebursts at characteristic frequency. J Neurophysiol 71:1022–1036

    PubMed  CAS  Google Scholar 

  • Kapfer C, Seidl AH, Schweizer H, Grothe B (2002) Experience-dependent refinement of inhibitory inputs to auditory coincidence-detector neurons. Nat Neurosci 5:247–253

    Article  PubMed  CAS  Google Scholar 

  • Koppl C, Carr CE (2008) Maps of interaural time difference in the chicken’s brainstem nucleus laminaris. Biol Cybern 98:541–559

    Article  Google Scholar 

  • Lorente De Nó R (1947) Action potential of the motoneurons of the hypoglossus nucleus. J Cell Comp Physiol 29:207–287

    Article  Google Scholar 

  • Manis PB, Brownell WE (1983) Synaptic organization of eighth nerve afferents to cat dorsal cochlear nucleus. J Neurophysiol 50:1156–1181

    PubMed  CAS  Google Scholar 

  • Marsh JT, Worden FG, Smith JC (1970) Auditory frequency-following response: neural or artifact? Science 169:1222–1223

    Article  PubMed  CAS  Google Scholar 

  • Nicholson C, Freeman JA (1975) Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. J Neurophysiol 38:356–368

    PubMed  CAS  Google Scholar 

  • Schwartz IR (1977) Dendritic arrangements in the cat medial superior olive. Neuroscience 2:81–101

    Article  PubMed  CAS  Google Scholar 

  • Schwarz DW (1992) Can central neurons reproduce sound waveforms? An analysis of the neurophonic potential in the laminar nucleus of the chicken. J Otolaryngol 21:30–38

    PubMed  CAS  Google Scholar 

  • Scott LL, Hage TA, Golding NL (2007) Weak action potential backpropagation is associated with high-frequency axonal firing capability in principal neurons of the gerbil medial superior olive. J Physiol 583:647–661

    Article  PubMed  CAS  Google Scholar 

  • Smith PH (1995) Structural and functional differences distinguish principal from nonprincipal cells in the guinea pig MSO slice. J Neurophysiol 73:1653–1667

    PubMed  CAS  Google Scholar 

  • Snyder RL, Schreiner CE (1984) The auditory neurophonic: basic properties. Hear Res 15:261–280

    Article  PubMed  CAS  Google Scholar 

  • Stotler WA (1953) An experimental study of the cells and connections of the superior olivary complex of the cat. J Comp Neurol 98:401–431

    Article  PubMed  CAS  Google Scholar 

  • Sullivan WE, Konishi M (1986) Neural map of interaural phase difference in the owl’s brainstem. Proc Natl Acad Sci U S A 83:8400–8404

    Article  PubMed  CAS  Google Scholar 

  • Yin TCT, Chan JK (1990) Interaural time sensitivity in medial superior olive of cat. J Neurophysiol 64:465–488

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip X. Joris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this paper

Cite this paper

Laughlin, M.M., van der Heijden, M., Joris, P.X. (2010). Phase Shifts in Monaural Field Potentials of the Medial Superior Olive. In: Lopez-Poveda, E., Palmer, A., Meddis, R. (eds) The Neurophysiological Bases of Auditory Perception. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5686-6_35

Download citation

Publish with us

Policies and ethics