Skip to main content

Higher-Order Correlations and Cumulants

  • Chapter
Analysis of Parallel Spike Trains

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 7))

Abstract

Recent advances in electrophysiological and imaging techniques have highlighted the need for correlation measures that go beyond simple pairwise analyses. In this chapter, we discuss cumulant correlations as natural and intuitive higher-order generalizations of the covariance. In particular, we show how cumulant correlations fit to a frequently used additive model of correlation, an idea that mimics correlations among spike trains that originate from overlapping input pools. Finally, we compare the cumulant correlations to the interaction parameters of the well-known exponential family by computing the respective parameters for two different models. We find that the different frameworks measure entirely different aspects, so that populations can have higher-order correlations in one framework but none in the other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bahadur R (1961) A representation of the joint distribution of responses to n dichotomous items. In: Solomon H (ed) Studies in item analysis and prediction. Stanford University Press, Stanford, pp 158–168

    Google Scholar 

  • Bair W, Zohary E, Newsome W (2001) Correlated firing in Macaque visual area MT: time scales and relationship to behavior. J Neurosci 21:1676–1697

    CAS  PubMed  Google Scholar 

  • Bell A, Sejnowski T (1996) Learning the higher-order structure of a natural sound. Network Comput Neural Syst 7:261–266

    Article  CAS  Google Scholar 

  • Blaschke T, Wiskott L (2004) CuBICA: independent component analysis by simultaneous third- and fourth-order cumulant diagonalization. IEEE Trans Signal Process 52:1250–1256

    Article  Google Scholar 

  • Bohte SM, Spekreijse H, Roelfsema PR (2000) The effects of pair-wise and higher-order correlations on the firing rate of a postsynaptic neuron. Neural Comput 12:153–179

    Article  CAS  PubMed  Google Scholar 

  • Brette R (2009) Generation of correlated spike trains. Neural Comput 21:188–215

    Article  PubMed  Google Scholar 

  • Brillinger D (1996) Uses of cumulants in wavelet analysis. J Nonparam Statist 6:93–114

    Article  Google Scholar 

  • Darroch J, Speed T (1983) Additive and multiplicative models and interactions. Ann Statist 11:724–738

    Article  Google Scholar 

  • De la Rocha J, Doiron B, Shea-Brown E, Kresimir J, Reyes A (2007) Correlation between neural spike trains increases with firing rate. Nature 448:802–807

    Article  PubMed  Google Scholar 

  • Di Nardo E, Guarino G, Senato D (2008) A unifying framework for k-statistics, polykays and their multivariate generalizations. Bernoulli 14:440–468

    Article  Google Scholar 

  • Ehm W, Staude B, Rotter S (2007) Decomposition of neuronal assembly activity via empirical de-Poissonization. Electron J Statist 1:473–495

    Article  Google Scholar 

  • Fujisawa S, Amarasingham A, Harrison M, Buzsaki G (2008) Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nature Neurosci 11:823–833

    Article  CAS  PubMed  Google Scholar 

  • Gardiner CW (2003) Handbook of stochastic methods for physics, chemistry and the natural sciences. Springer Series in Synergetics, vol 13, 3rd edn. Springer, Berlin

    Google Scholar 

  • Gerstein GL, Bedenbaugh P, Aertsen A (1989) Neuronal assemblies. IEEE Trans Biomed Eng 36:4–14

    Article  CAS  PubMed  Google Scholar 

  • Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86:1698–1702

    Article  CAS  PubMed  Google Scholar 

  • Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York

    Google Scholar 

  • Holgate P (1964) Estimation for the bivariate Poisson distribution. Biometrika 51:241–245

    Google Scholar 

  • Ince RAA, Montani F, Arabzadeh E, Diamond ME, Panzeri S (2009a) On the presence of high-order interactions among somatosensory neurons and their effect on information transmission. In: Proceedings of the international workshop on statistical mechanical informatics, pp 1–11

    Google Scholar 

  • Ince RAA, Petersen RS, Swan DC, Panzeri S (2009b) Python for information theoretic analysis of neural data. Frontiers Neuroinform 3:Article 4

    Google Scholar 

  • Ip E, Wang Y, Yeh Y (2004) Structural decompositions of multivariate distributions with applications in moment and cumulant. J Multivariate Anal 89:119–134

    Article  Google Scholar 

  • Jaynes E (1957a) Information theory and statistical mechanics. Phys Rev 106:620–630

    Article  Google Scholar 

  • Jaynes E (1957b) Information theory and statistical mechanics. II. Phys Rev 108:171–190

    Article  Google Scholar 

  • Johnson D, Goodman I (2007) Jointly Poisson processes. arXiv:0911.2524

  • Johnson D, Goodman I (2008) Inferring the capacity of the vector Poisson channel with a Bernoulli model. Network Comput Neural Syst 19:13–33

    Article  Google Scholar 

  • Karlis D, Meligkotsidou L (2005) Multivariate Poisson regression with covariance structure. Stat Comput 15:255–265

    Article  Google Scholar 

  • Kawamura K (1979) The structure of multivariate Poisson distribution. Kodai Math J 2:337–345

    Article  Google Scholar 

  • Kohn A, Smith MA (2005) Stimulus dependence of neuronal correlations in primary visual cortex of the Macaque. J Neurosci 25:3661–3673

    Article  CAS  PubMed  Google Scholar 

  • Kohn A, Zandvakili A, Smith MA (2009) Correlations and brain states: from electrophysiology to functional imaging. Curr Opin Neurobiol 19:1–5

    Article  Google Scholar 

  • Kuhn A, Aertsen A, Rotter S (2003) Higher-order statistics of input ensembles and the response of simple model neurons. Neural Comput 1:67–101

    Article  Google Scholar 

  • Lancaster B, Adams PR (1986) Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J Neurophysiol 55:1268–1282

    CAS  PubMed  Google Scholar 

  • Lancaster H (1958) The structure of bivariate distributions. Ann Math Statist 29:719–736

    Article  Google Scholar 

  • Lestienne R (2001) Spike timing, synchronization and information processing on the sensory side of the central nervous system. Progr Neurobiol 65:545–591

    Article  CAS  Google Scholar 

  • Martignon L, von Hasseln H, GrĂ¼n S, Aertsen A, Palm G (1995) Detecting higher-order interactions among the spiking events in a group of neurons. Biol Cybern 73:69–81

    Article  CAS  PubMed  Google Scholar 

  • Martignon L, Deco G, Laskey K, Diamond M, Freiwald W, Vaadia E (2000) Neural coding: higher-order temporal patterns in the neurostatistics of cell assemblies. Neural Comput 12:2621–2653

    Article  CAS  PubMed  Google Scholar 

  • Mattner L (2004) Cumulants are universal homomorphisms into Hausdorff groups. Probab Theory Related Fields 130:151–166

    Google Scholar 

  • Montani F, Ince RAA, Senatore R, Arabzadeh E, Diamond ME, Panzeri S (2009) The impact of high-order interactions on the rate of synchronous discharge and information transmission in somatosensory cortex. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 367:3297–3310

    Article  Google Scholar 

  • Nakahara H, Amari S (2002) Information-geometric measure for neural spikes. Neural Comput 10:2269–2316

    Article  Google Scholar 

  • Papoulis A, Pillai SU (2002) Probability, random variables, and stochastic processes, 4th edn. McGraw-Hill, Boston

    Google Scholar 

  • Riehle A, GrĂ¼n S, Diesmann M, Aertsen A (1997) Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278:1950–1953

    Article  CAS  PubMed  Google Scholar 

  • Roudi Y, Nirenberg S, Latham PE (2009) Pairwise maximum entropy models for studying large biological systems: when they can work and when they can’t. PLoS Comput Biol 5:e1000380

    Article  PubMed  Google Scholar 

  • Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2:539–550

    Article  CAS  PubMed  Google Scholar 

  • Sarmanov O (1962) Maximum correlation coefficient (nonsymmetric case). In: Selected translations in mathematical statistics and probability, vol 4. Am Math Soc, Providence, pp 271–275

    Google Scholar 

  • Schneidman E, Berry MJ, Segev R, Bialek W (2006) Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440:1007–1012

    Article  CAS  PubMed  Google Scholar 

  • Shea-Brown E, Josic K, de la Rocha J, Doiron B (2008) Correlation and synchrony transfer in integrate-and-fire neurons: basic properties and consequences for coding. Phys Rev Lett 100:108102

    Article  PubMed  Google Scholar 

  • Shimazaki H, Amari S, Brown EN, GrĂ¼n S (2009) State-space analysis on time-varying correlations in parallel spike sequences. In: Proc IEEE international conference on acoustics speech and signal processing ICASSP, pp 3501–3504

    Google Scholar 

  • Shlens J, Field GD, Gauthier JL, Grivich MI, Petrusca D, Sher A, Litke AM, Chichilnisky EJ (2006) The structure of multi-neuron firing patterns in primate retina. J Neurosci 26:8254–8266

    Article  CAS  PubMed  Google Scholar 

  • Staude B, Rotter S, GrĂ¼n S (2008) Can spike coordination be differentiated from rate covariation?. Neural Comput 20:1973–1999

    Article  PubMed  Google Scholar 

  • Staude B, Rotter S, GrĂ¼n S (2009) CuBIC: cumulant based inference of higher-order correlations. J Comp Neurosci. doi: 10.1007/s10827-009-0195-x

    Google Scholar 

  • Staude B, GrĂ¼n S, Rotter S (2010) Higher-order correlations in non-stationary parallel spike trains: statistical modeling and inference. Frontiers Computat Neurosci 4:16. doi:10.3389/fncom.2010.00016

    Google Scholar 

  • Stratonovich RL (1967) Topics in the theory of random noise. Gordon & Breach Science, New York

    Google Scholar 

  • Streitberg B (1990) Lancaster interactions revisited. Ann Statist 18:1878–1885

    Article  Google Scholar 

  • Streitberg B (1999) Exploring interactions in high-dimensional tables: a bootstrap alternative to log-linear models. Ann Statist 27:405–413

    Article  Google Scholar 

  • Stuart A, Ord JK (1987) Kendall’s advanced theory of statistics, 5th edn. Griffin and Co, London

    Google Scholar 

  • Tetzlaff T, Rotter S, Stark E, Abeles M, Aertsen A, Diesmann M (2008) Dependence of neuronal correlations on filter characteristics and marginal spike-train statistics. Neural Comput 20:2133–2184

    Article  PubMed  Google Scholar 

  • Vaadia E, Haalman I, Abeles M, Bergman H, Prut Y, Slovin H, Aertsen A (1995) Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature 373:515–518

    Article  CAS  PubMed  Google Scholar 

  • Wolfram Research, Inc (2008) Mathematica edition: version 7.0. Wolfram Research, Inc, Champaign

    Google Scholar 

  • Womelsdorf T, Fries P (2007) The role of neuronal synchronization in selective attention. Curr Opin Neurobiol 17:154–160

    Article  CAS  PubMed  Google Scholar 

  • Zhou DL, Zeng B, Xu Z, You L (2006) Multiparty correlation measure based on the cumulant. Phys Rev A 74:052110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Rotter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Staude, B., GrĂ¼n, S., Rotter, S. (2010). Higher-Order Correlations and Cumulants. In: GrĂ¼n, S., Rotter, S. (eds) Analysis of Parallel Spike Trains. Springer Series in Computational Neuroscience, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5675-0_12

Download citation

Publish with us

Policies and ethics