Advertisement

How Does Stress Work? The Role of Memes in Epigenesis

Chapter

Abstract

Stress responsiveness is affected by early experience. For example, in rats, high grooming and licking by mother in early life results in decreased reactivity to later stress by increasing the expression of glucocorticoid receptor genes in the brain. Memories of early experience and resulting changes in genes (epigenesis) determine stress sensitivity in later life. Epigenesis may result in increased or decreased susceptibility to influx of stress memes.

Keywords

Glucocorticoid Receptor Chronic Stress Maternal Behavior Adult Offspring Locus Ceruleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baylin, S. (2001) DNA methylation and epigenetic mechanisms of carcinogenesis. Dev Biol (Basel), 106, 85–87, discussion 143–160.Google Scholar
  2. Bennur, S., Shankaranarayana Rao, B. S., Pawlak, R., et al. (2007) Stress-induced spine loss in the medial amygdala is mediated by tissue-plasminogen activator. Neuroscience, 144, 8–16.CrossRefPubMedGoogle Scholar
  3. Bergmann, A., Lane, M. E. (2003) Hidden targets of microRNAs for growth control. Trends Biochem Sci, 28, 461–463.CrossRefPubMedGoogle Scholar
  4. Conrad, C. D., LeDoux, J. E., Magarinos, A. M., et al. (1999) Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav Neurosci, 113, 902–913.CrossRefPubMedGoogle Scholar
  5. Dawkins, R. (1976) The Selfish Gene. Oxford University Press, New York.Google Scholar
  6. Detich, N., Bovenzi, V., Szyf, M. (2003) Valproate induces replication-independent active DNA demethylation. J Biol Chem, 278, 27586–27592.CrossRefPubMedGoogle Scholar
  7. Eckhardt, F., Beck, S., Gut, I. G., et al. (2004) Future potential of the human epigenome project. Expert Rev Mol Diagn, 4, 609–618.CrossRefPubMedGoogle Scholar
  8. Eckhardt, F., Lewin, J., Cortese, R., et al. (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet, 38, 1378–1385.CrossRefPubMedGoogle Scholar
  9. Epel, E. S., Blackburn, E. H., Lin, J., et al. (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA, 101, 17312–17315.CrossRefPubMedGoogle Scholar
  10. Gould, E., McEwen, B. S., Tanapat, P., et al. (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci, 17, 2492–2498.PubMedGoogle Scholar
  11. Govindarajan, A., Rao, B. S., Nair, D., et al. (2006) Transgenic brain-derived neurotrophic factor expression causes both anxiogenic and antidepressant effects. Proc Natl Acad Sci USA, 103, 13208–13213.CrossRefPubMedGoogle Scholar
  12. Jenuwein, T., Allis, C. D. (2001) Translating the histone code. Science, 293, 1074–1080.CrossRefPubMedGoogle Scholar
  13. Kim, J. J., Koo, J. W., Lee, H. J., et al. (2005) Amygdalar inactivation blocks stress-induced impairments in hippocampal long-term potentiation and spatial memory. J Neurosci, 25, 1532–1539.CrossRefPubMedGoogle Scholar
  14. Koob, G. F. (1999) Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry, 46, 1167–1180.CrossRefPubMedGoogle Scholar
  15. Lesche, R., Eckhardt, F. (2007) DNA methylation markers: A versatile diagnostic tool for routine clinical use. Curr Opin Mol Ther, 9, 222–230.PubMedGoogle Scholar
  16. Lupien, S. J., de Leon, M., de Santi, S., et al. (1998) Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci, 1, 69–73.CrossRefPubMedGoogle Scholar
  17. Marom, S., Munitz, H., Jones, P. B., et al. (2005) Expressed emotion: Relevance to rehospitalization in schizophrenia over 7 years. Schizophr Bull, 31, 751–758.CrossRefPubMedGoogle Scholar
  18. McEwen, B. S. (1998) Stress, adaptation, and disease. Allostasis and allostatic load. Ann NY Acad Sci, 840, 33–44.CrossRefPubMedGoogle Scholar
  19. McEwen, B. S. (2007) Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiol Rev, 87, 873–904.CrossRefPubMedGoogle Scholar
  20. Milutinovic, S., D’Alessio, A. C., Detich, N., et al. (2007) Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes. Carcinogenesis, 28, 560–571.CrossRefPubMedGoogle Scholar
  21. Razin, A. (1998) CpG methylation, chromatin structure and gene silencing—a three-way connection. EMBO J, 17, 4905–4908.CrossRefPubMedGoogle Scholar
  22. Razin, A., Kantor, B. (2005) DNA methylation in epigenetic control of gene expression. Prog Mol Subcell Biol, 38, 151–167.CrossRefPubMedGoogle Scholar
  23. Rountree, M. R., Bachman, K. E., Herman, J. G., et al. (2001) DNA methylation, chromatin inheritance, and cancer. Oncogene, 20, 3156–3165.CrossRefPubMedGoogle Scholar
  24. Sapolsky, R. M., Krey, L. C., McEwen, B. S. (1986) The neuroendocrinology of stress and aging: The glucocorticoid cascade hypothesis. Endocr Rev, 7, 284–301.CrossRefPubMedGoogle Scholar
  25. Selye, H. (1956) The Stress of Life. McGraw Hill, New York.Google Scholar
  26. Sterling, P., Eyer, J. (1988) Allostasis: A new paradigm to explain arousal pathology. In Handbook of Life Stress, Cognition and Health (J. Reason and S. Fisher eds.), pp. 629–649. Wiley, New York.Google Scholar
  27. Szyf, M., Weaver, I., Meaney, M. (2007) Maternal care, the epigenome and phenotypic differences in behavior. Reprod Toxicol, 24, 9–19.CrossRefPubMedGoogle Scholar
  28. Taverna, S. D., Li, H., Ruthenburg, A. J., et al. (2007) How chromatin-binding modules interpret histone modifications: Lessons from professional pocket pickers. Nat Struct Mol Biol, 14, 1025–1040.CrossRefPubMedGoogle Scholar
  29. Tremolizzo, L., Carboni, G., Ruzicka, W. B., et al. (2002) An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci USA, 99, 17095–17100.CrossRefPubMedGoogle Scholar
  30. Unterberger, A., Andrews, S. D., Weaver, I. C., et al. (2006) DNA methyltransferase 1 knockdown activates a replication stress checkpoint. Mol Cell Biol, 26, 7575–7586.CrossRefPubMedGoogle Scholar
  31. Veldic, M., Guidotti, A., Maloku, E., et al. (2005) In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci USA, 102, 2152–2157.CrossRefPubMedGoogle Scholar
  32. Weaver, I. C. (2007) Epigenetic programming by maternal behavior and pharmacological intervention. Nature versus nurture: Let’s call the whole thing off. Epigenetics, 2, 22–28.CrossRefPubMedGoogle Scholar
  33. Weaver, I. C., Cervoni, N., Champagne, F. A., et al. (2004) Epigenetic programming by maternal behavior. Nat Neurosci, 7, 847–854.CrossRefPubMedGoogle Scholar
  34. Weaver, I. C., Champagne, F. A., Brown, S. E., et al. (2005) Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: Altering epigenetic marking later in life. J Neurosci, 25, 11045–11054.CrossRefPubMedGoogle Scholar
  35. Weaver, I. C., D’Alessio, A. C., Brown, S. E., et al. (2007) The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: Altering epigenetic marks by immediate-early genes. J Neurosci, 27, 1756–1768.CrossRefPubMedGoogle Scholar
  36. Weaver, I. C., Meaney, M. J., Szyf, M. (2006) Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc Natl Acad Sci USA, 103, 3480–3485.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.University of CaliforniaSan FranciscoUSA

Personalised recommendations