Skip to main content

Tick as a Model for the Study of a Primitive Complement System

  • Conference paper
  • First Online:
Recent Advances on Model Hosts

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 710))

Abstract

Ticks are blood feeding parasites transmitting a wide variety of pathogens to their vertebrate hosts. The transmitted pathogens apparently evolved efficient mechanisms enabling them to evade or withstand the cellular or humoral immune responses within the tick vector. Despite its importance, our knowledge of tick innate immunity still lags far beyond other well established invertebrate models, such as drosophila, horseshoe crab or mosquitoes. However, the recent release of the American deer tick, Ixodes scapularis, genome and feasibility of functional analysis based on RNA interference (RNAi) facilitate the development of this organism as a full-value model for deeper studies of vector-pathogen interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ariki S, Takahara S, Shibata T et al (2008) Factor C acts as a lipopolysaccharide-responsive C3 convertase in horseshoe crab complement activation. J Immunol 181:7994–8001

    PubMed  CAS  Google Scholar 

  • Armstrong PB (2010) Role of α2-macroglobulin in the immune response of invertebrates. Invert Surviv J 7:165–180

    Google Scholar 

  • Barker SC, Murell A (2008) Systematics and evolution of ticks with a list of valid genus and species names. In: Bowman AS, Nuttall PA (eds) Ticks: biology, disease and control. Cambridge University Press, Cambridge/New York, pp 1–39

    Chapter  Google Scholar 

  • Baxter RH, Chang CI, Chelliah Y et al (2007) Structural basis for conserved complement factor-like function in the antimalarial protein TEP1. Proc Natl Acad Sci USA 104:11615–11620

    Article  PubMed  CAS  Google Scholar 

  • Bell-Sakyi L, Zweygarth E, Blouin EF et al (2007) Tick cell lines: tools for tick and tick-borne disease research. Trends Parasitol 23:450–457

    Article  PubMed  CAS  Google Scholar 

  • Bishop R, Musoke A, Skilton R (2008) Theileria: life cycle stages associated with the ixodid tick vector. In: Bowman AS, Nuttall PA (eds) Ticks: biology, disease and control. Cambridge University Press, New York, pp 308–324

    Chapter  Google Scholar 

  • Blandin S, Levashina EA (2004) Thioester-containing proteins and insect immunity. Mol Immunol 40:903–908

    Article  PubMed  CAS  Google Scholar 

  • Blandin S, Shiao SH, Moita LF et al (2004) Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 116:661–670

    Article  PubMed  CAS  Google Scholar 

  • Blandin SA, Marois E, Levashina EA (2008) Antimalarial responses in Anopheles gambiae: from a complement-like protein to a complement-like pathway. Cell Host Microbe 3:364–374

    Article  PubMed  CAS  Google Scholar 

  • Blouin EF, de la Fuente J, Garcia-Garcia JC et al (2002) Applications of a cell culture system for studying the interaction of Anaplasma marginale with tick cells. Anim Health Res Rev 3:57–68

    Article  PubMed  Google Scholar 

  • Borovickova B, Hypsa V (2005) Ontogeny of tick hemocytes: a comparative analysis of Ixodes ricinus and Ornithodoros moubata. Exp Appl Acarol 35:317–333

    Article  PubMed  Google Scholar 

  • Buresova V (2009) Function of the α2-macroglobulin protein family in the immune response of the tick Ixodes ricinus [Ph.D.]. Ceske Budejovice. Faculty of Science, University of South Bohemia

    Google Scholar 

  • Buresova V, Franta Z, Kopacek P (2006) A comparison of Chryseobacterium indologenes pathogenicity to the soft tick Ornithodoros moubata and hard tickIxodes ricinus. J Invertebr Pathol 93:96–104

    Article  PubMed  Google Scholar 

  • Buresova V, Hajdusek O, Franta Z et al (2009) IrAM-An alpha2-macroglobulin from the hard tick Ixodes ricinus: characterization and function in phagocytosis of a potential pathogen Chryseobacterium indologenes. Dev Comp Immunol 33:489–498

    Article  PubMed  CAS  Google Scholar 

  • Chauvin A, Moreau E, Bonnet S et al (2009) Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res 40:37

    Article  PubMed  Google Scholar 

  • Coleman JL, Gebbia JA, Piesman J (1997) Plasminogen is required for efficient dissemination of B. burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell 89:1111–1119

    Article  PubMed  CAS  Google Scholar 

  • de la Fuente J, Kocan KM, Almazan C et al (2007) RNA interference for the study and genetic manipulation of ticks. Trends Parasitol 23:427–433

    Article  PubMed  Google Scholar 

  • de la Fuente J, Estrada-Pena A, Venzal JM et al (2008a) Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci 13:6938–6946

    Article  PubMed  Google Scholar 

  • de la Fuente J, Kocan KM, Almazan C et al (2008b) Targeting the tick-pathogen interface for novel control strategies. Front Biosci 13:6947–6956

    Article  PubMed  Google Scholar 

  • de Silva AM, Tyson KR, Pal U (2009) Molecular characterization of the tick-Borrelia interface. Front Biosci 14:3051–3063

    Article  PubMed  Google Scholar 

  • Doan N, Gettins PG (2007) Human alpha2-macroglobulin is composed of multiple domains, as predicted by homology with complement component C3. Biochem J 407:23–30

    Article  PubMed  CAS  Google Scholar 

  • Dodds AW, Day AJ (1996) Complement-related proteins in invertebrates. In: Soderhall K, Iwanaga S, Vasta GR (eds) New directions in invertebrate immunology. SOS Publications, Fair Haven, pp 303–342

    Google Scholar 

  • Endo Y, Takahashi M, Fujita T (2006) Lectin complement system and pattern recognition. Immunobiology 211:283–293

    Article  PubMed  CAS  Google Scholar 

  • Ferrandon D, Imler JL, Hetru C et al (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7:862–874

    Article  PubMed  CAS  Google Scholar 

  • Francischetti IM, Sa-Nunes A, Mans BJ et al (2009) The role of saliva in tick feeding. Front Biosci 14:2051–2088

    Article  PubMed  CAS  Google Scholar 

  • Gokudan S, Muta T, Tsuda R et al (1999) Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally related to fibrinogen. Proc Natl Acad Sci USA 96:10086–10091

    Article  PubMed  CAS  Google Scholar 

  • Grubhoffer L, Rego ROM, Hajdušek O et al (2008) Tick lectins and fibrinogen-related proteins. In: Bowman AS, Nuttall PA (eds) Ticks: biology, disease and control. Cambridge University Press, Cambridge/New York, pp 127–142

    Chapter  Google Scholar 

  • Hovius JW, van Dam AP, Fikrig E (2007) Tick-host-pathogen interactions in Lyme borreliosis. Trends Parasitol 23:434–438

    Article  PubMed  CAS  Google Scholar 

  • Inoue N, Hanada K, Tsuji N et al (2001) Characterization of phagocytic hemocytes in Ornithodoros moubata (Acari: Ixodidae). J Med Entomol 38:514–519

    Article  PubMed  CAS  Google Scholar 

  • Iwanaga S, Lee BL (2005) Recent advances in the innate immunity of invertebrate animals. J Biochem Mol Biol 38:128–150

    Article  PubMed  CAS  Google Scholar 

  • Janssen BJ, Huizinga EG, Raaijmakers HC et al (2005) Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437:505–511

    Article  PubMed  CAS  Google Scholar 

  • Jongejan F, Uilenberg G (2004) The global importance of ticks. Parasitology 129(Suppl):S3–14

    PubMed  Google Scholar 

  • Kawabata S, Tsuda R (2002) Molecular basis of non-self recognition by the horseshoe crab tachylectins. Biochim Biophys Acta 1572:414–421

    Article  PubMed  CAS  Google Scholar 

  • Kawabata S, Koshiba T, Shibata T (2009) The lipopolysaccharide-activated innate immune response network of the horseshoe crab. Invert Surviv J 6:59–77

    Google Scholar 

  • Kocan KM, de la Fuente J, Blouin EF (2008) Advances toward understanding the molecular biology of the Anaplasma-tick interface. Front Biosci 13:7032–7045

    Article  PubMed  CAS  Google Scholar 

  • Kopacek P, Weise C, Saravanan T et al (2000) Characterization of an alpha-macroglobulin-like glycoprotein isolated from the plasma of the soft tick Ornithodoros moubata. Eur J Biochem 267:465–475

    Article  PubMed  CAS  Google Scholar 

  • Kopacek P, Hajdusek O, Buresova V et al (2010) Tick innate immunity. In: Soderhall K (ed) Invertebrate immunity. Landes Bioscience and Springer Science  +  Business Media, New York, pp 137–162

    Google Scholar 

  • Kovar V, Kopacek P, Grubhoffer L (2000) Isolation and characterization of Dorin M, a lectin from plasma of the soft tick Ornithodoros moubata. Insect Biochem Mol Biol 30:195–205

    Article  PubMed  CAS  Google Scholar 

  • Kuhn KH, Haug T (1994) Ultrastructural, cytochemical, and immunocytochemical characterization of hemocytes of the hard tick Ixodes ricinus (Acari Chelicerata). Cell Tissue Res 277:493–504

    Article  Google Scholar 

  • Lehane MJ, Aksoy S, Levashina E (2004) Immune responses and parasite transmission in blood-feeding insects. Trends Parasitol 20:433–439

    Article  PubMed  CAS  Google Scholar 

  • Levashina EA, Moita LF, Blandin S et al (2001) Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104:709–718

    Article  PubMed  CAS  Google Scholar 

  • Loosova G, Jindrak L, Kopacek P (2001) Mortality caused by experimental infection with the yeast Candida haemulonii in the adults of Ornithodoros moubata (Acarina: Argasidae). Folia Parasitol (Praha) 48:149–153

    CAS  Google Scholar 

  • Man P, Kovar V, Sterba J et al (2008) Deciphering Dorin M glycosylation by mass spectrometry. Eur J Mass Spectrom (Chichester, Eng) 14:345–354

    Article  CAS  Google Scholar 

  • Mattila JT, Munderloh UG, Kurtti TJ (2007) Phagocytosis of the Lyme disease spirochete, Borrelia burgdorferi, by cells from the ticks, Ixodes scapularis and Dermacentor andersoni, infected with an endosymbiont, Rickettsia peacockii. J Insect Sci 7(58):1–12

    Article  Google Scholar 

  • Moita LF, Wang-Sattler R, Michel K et al (2005) In vivo identification of novel regulators and conserved pathways of phagocytosis in A. gambiae. Immunity 23:65–73

    Article  PubMed  CAS  Google Scholar 

  • Nava S, Guglielmone AA, Mangold AJ (2009) An overview of systematics and evolution of ticks. Front Biosci 14:2857–2877

    Article  PubMed  CAS  Google Scholar 

  • Nene V (2009) Tick genomics–coming of age. Front Biosci 14:2666–2673

    Article  PubMed  CAS  Google Scholar 

  • Nonaka M, Kimura A (2006) Genomic view of the evolution of the complement system. Immunogenetics 58:701–713

    Article  PubMed  CAS  Google Scholar 

  • Osta MA, Christophides GK, Vlachou D et al (2004) Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics. J Exp Biol 207:2551–2563

    Article  PubMed  CAS  Google Scholar 

  • Pereira LS, Oliveira PL, Barja-Fidalgo C et al (2001) Production of reactive oxygen species by hemocytes from the cattle tick Boophilus microplus. Exp Parasitol 99:66–72

    Article  PubMed  CAS  Google Scholar 

  • Rego RO, Hajdusek O, Kovar V et al (2005) Molecular cloning and comparative analysis of fibrinogen-related proteins from the soft tick Ornithodoros moubata and the hard tick Ixodes ricinus. Insect Biochem Mol Biol 35:991–1004

    Article  PubMed  CAS  Google Scholar 

  • Rego RO, Kovar V, Kopacek P et al (2006) The tick plasma lectin, Dorin M, is a fibrinogen-related molecule. Insect Biochem Mol Biol 36:291–299

    Article  PubMed  CAS  Google Scholar 

  • Ricklin D, Hajishengallis G, Yang K et al (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11:785–797

    Article  PubMed  CAS  Google Scholar 

  • Rittig MG, Kuhn KH, Dechant CA et al (1996) Phagocytes from both vertebrate and invertebrate species use “coiling” phagocytosis. Dev Comp Immunol 20:393–406

    Article  PubMed  CAS  Google Scholar 

  • Saravanan T, Weise C, Sojka D et al (2003) Molecular cloning, structure and bait region splice variants of alpha2-macroglobulin from the soft tick Ornithodoros moubata. Insect Biochem Mol Biol 33:841–851

    Article  PubMed  CAS  Google Scholar 

  • Sonenshine DE (1991) Biology of ticks, vol 1. Oxford University Press, New York

    Google Scholar 

  • Sonenshine DE, Hynes WL (2008) Molecular characterization and related aspects of the innate immune response in ticks. Front Biosci 13:7046–7063

    Article  PubMed  CAS  Google Scholar 

  • Stroschein-Stevenson SL, Foley E, O’Farrell PH et al (2006) Identification of Drosophilagene products required for phagocytosis of Candida albicans. PLoS Biol 4:e4

    Article  PubMed  Google Scholar 

  • Zhu Y, Thangamani S, Ho B et al (2005) The ancient origin of the complement system. EMBO J 24:382–394

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant P506/110/2136 to P.K. from the Grant Agency of the Czech Republic, the Research Centre LC06009 and Research projects Z60220518 and MSMT6007665801 from Ministry of Education, Youth, and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Kopacek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Kopacek, P., Hajdusek, O., Buresova, V. (2012). Tick as a Model for the Study of a Primitive Complement System. In: Mylonakis, E., Ausubel, F., Gilmore, M., Casadevall, A. (eds) Recent Advances on Model Hosts. Advances in Experimental Medicine and Biology, vol 710. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5638-5_9

Download citation

Publish with us

Policies and ethics