Skip to main content

Where Simplicity Meets Complexity: Hydra, a Model for Host–Microbe Interactions

  • Conference paper
  • First Online:
Recent Advances on Model Hosts

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 710))

Abstract

For a long time, the main purpose of microbiology and immunology was to study pathogenic bacteria and infectious disease; the potential benefit of commensal bacteria remained unrecognised. Discovering that individuals from Hydra to man are not solitary, homogenous entities but consist of complex communities of many species that likely evolved during a billion years of coexistence (Fraune and Bosch 2010) led to the hologenome theory of evolution (Zilber-Rosenberg and Rosenberg 2008) which considers the holobiont with its hologenome as the unit of selection in evolution. Defining the individual microbe–host conversations in these consortia is a challenging but necessary step on the path to understanding the function of the associations as a whole. Untangling the complex interactions requires simple animal models with only a few specific bacterial species. Such models can function as living test tubes and may be key to dissecting the fundamental principles that underlie all host–microbe interactions. Here we introduce Hydra (Bosch et al. 2009) as such a model with one of the simplest epithelia in the animal kingdom (only two cell layers), with few cell types derived from only three distinct stem cell lineages, and with the availability of a fully sequenced genome and numerous genomic tools including transgenesis. Recognizing the entire system with its inputs, outputs and the interconnections (Fraune and Bosch 2010; Bosch et al. 2009; Fraune and Bosch 2007; Fraune et al. 2009a) we here present observations which may have profound impact on understanding a strictly microbe-dependent life style and its evolutionary consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Augustin R, Siebert S, Bosch TC (2009a) Identification of a kazal-type serine protease inhibitor with potent anti-staphylococcal activity as part of Hydra’s innate immune system. Dev Comp Immunol 33:830–837

    Article  PubMed  CAS  Google Scholar 

  • Augustin R, Anton-Erxleben F, Jungnickel S, Hemmrich G, Spudy B, Podschun R, Bosch TC (2009b) Activity of the novel peptide arminin against multiresistant human pathogens shows the considerable potential of phylogenetically ancient organisms as drug sources. Antimicrob Agents Chemother 53:5245–5250

    Article  PubMed  CAS  Google Scholar 

  • Bosch TC (2007) Why polyps regenerate and we don’t: towards a cellular and molecular framework for Hydra regeneration. Dev Biol 303:421–433

    Article  PubMed  CAS  Google Scholar 

  • Bosch TCG, David CN (1986) Immunocompetence in Hydra: epithelial cells recognize self-nonself and react against it. J Exp Biol 238:225–234

    Google Scholar 

  • Bosch TC, Augustin R, Anton-Erxleben F, Fraune S, Hemmrich G, Zill H, Rosenstiel P, Jacobs G, Schreiber S, Leippe M, Stanisak M, Grotzinger J, Jung S, Podschun R, Bartels J, Harder J, Schroder JM (2009) Uncovering the evolutionary history of innate immunity: the simple metazoan Hydra uses epithelial cells for host defence. Dev Comp Immunol 33:559–569

    Article  PubMed  CAS  Google Scholar 

  • Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, Borman J, Busam D, Disbennett K, Pfannkoch C, Sumin N, Sutton GG, Viswanathan LD, Walenz B, Goodstein DM, Hellsten U, Kawashima T, Prochnik SE, Putnam NH, Shu S, Blumberg B, Dana CE, Gee L, Kibler DF, Law L, Lindgens D, Martinez DE, Peng J, Wigge PA, Bertulat B, Guder C, Nakamura Y, Ozbek S, Watanabe H, Khalturin K, Hemmrich G, Franke A, Augustin R, Fraune S, Hayakawa E, Hayakawa S, Hirose M, Hwang JS, Ikeo K, Nishimiya-Fujisawa C, Ogura A, Takahashi T, Steinmetz PR, Zhang X, Aufschnaiter R, Eder MK, Gorny AK, Salvenmoser W, Heimberg AM, Wheeler BM, Peterson KJ, Bottger A, Tischler P, Wolf A, Gojobori T, Remington KA, Strausberg RL, Venter JC, Technau U, Hobmayer B, Bosch TC, Holstein TW, Fujisawa T, Bode HR, David CN, Rokhsar DS, Steele RE (2010) The dynamic genome of Hydra. Nature 464:592–596

    Article  PubMed  CAS  Google Scholar 

  • Engelberg-Kulka H, Hazan R, Amitai S (2005) mazEF: a chromosomal toxin-antitoxin module that triggers programmed cell death in bacteria. J Cell Sci 118:4327–4332

    Article  PubMed  CAS  Google Scholar 

  • Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R (2006) Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2:e135

    Article  PubMed  Google Scholar 

  • Fraune S, Bosch TCG (2007) Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proc Natl Acad Sci USA 104:13146–13151

    Article  PubMed  CAS  Google Scholar 

  • Fraune S, Bosch TC (2010) Why bacteria matter in animal development and evolution. Bioessays 32:571–580

    Article  PubMed  CAS  Google Scholar 

  • Fraune S, Abe Y, Bosch TCG (2009a) Disturbing epithelial homeostasis in the metazoan Hydra leads to drastic changes in associated microbiota. Environ Microbiol 11:2361–2369

    Article  PubMed  CAS  Google Scholar 

  • Fraune S, Augustin R, Bosch TCG (2009b) Exploring host–microbe interactions in hydra. Microbe 4:457–462

    Google Scholar 

  • Fraune S, Augustin R, Anton-Erxleben F, Wittlieb J, Gelhaus C, Klimovich VB, Samoilovich MP, Bosch TC (2010) In an early branching metazoan, bacterial colonization of the embryo is controlled by maternal antimicrobial peptides. Proc Natl Acad Sci USA 107:18067–18072

    Article  PubMed  CAS  Google Scholar 

  • Habetha M, Anton-Erxleben F, Neumann K, Bosch TCG (2003) The Hydra viridis/Chlorella symbiosis. Growth and sexual differentiation in polyps without symbionts. Zoology 106:101–108

    Article  PubMed  Google Scholar 

  • Hemmrich G, Bosch TC (2008) Compagen, a comparative genomics platform for early branching metazoan animals, reveals early origins of genes regulating stem-cell differentiation. Bioessays 30:1010–1018

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Dingley AJ, Augustin R, Anton-Erxleben F, Stanisak M, Gelhaus C, Gutsmann T, Hammer MU, Podschun R, Bonvin AM, Leippe M, Bosch TC, Grotzinger J (2009) Hydramacin-1, structure and antibacterial activity of a protein from the basal metazoan Hydra. J Biol Chem 284:1896–1905

    Article  PubMed  CAS  Google Scholar 

  • Kortschak RD, Samuel G, Saint R, Miller DJ (2003) EST analysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in the model invertebrates. Curr Biol 13:2190–2195

    Article  PubMed  CAS  Google Scholar 

  • Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, Schmidt HA, Technau U, von Haeseler A, Hobmayer B, Martindale MQ, Holstein TW (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433:156–160

    Article  PubMed  CAS  Google Scholar 

  • Lange C, Hemmrich G, Klostermeier UC, López-Quintero JA, Miller DJ, Rahn T, Weiss Y, Bosch TC, Rosenstiel P (2011) Defining the origins of the NOD-like receptor system at the base of animal evolution. Mol Biol Evol. 28(5):1687–702. Epub 2010 Dec 23

    Google Scholar 

  • Miller DJ, Ball EE, Technau U (2005) Cnidarians and ancestral genetic complexity in the animal kingdom. Trends Genet 21:536–539

    Article  PubMed  CAS  Google Scholar 

  • Muscatine L, Lenhoff HM (1963) Symbiosis of Hydra with algae. J Gen Microbiol 32:6

    Google Scholar 

  • O’Brien TL (1982) Inhibition of vacuolar membrane-fusion by intracellular symbiotic algae in Hydra-viridis (Florida strain). J Exp Zool 223:211–218

    Article  PubMed  Google Scholar 

  • Phillips AJ, Anderson VL, Robertson EJ, Secombes CJ, van West P (2008) New insights into animal pathogenic oomycetes. Trends Microbiol 16:13–19

    Article  PubMed  CAS  Google Scholar 

  • Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science (New York, NY) 317:86–94

    Article  CAS  Google Scholar 

  • Rast JP, Smith LC, Loza-Coll M, Hibino T, Litman GW (2006) Genomic insights into the immune system of the sea urchin. Science (New York, NY) 314:952–956

    Article  CAS  Google Scholar 

  • Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev 5:355–362

    Article  CAS  Google Scholar 

  • Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955–960

    Article  PubMed  CAS  Google Scholar 

  • Technau U, Rudd S, Maxwell P, Gordon PM, Saina M, Grasso LC, Hayward DC, Sensen CW, Saint R, Holstein TW, Ball EE, Miller DJ (2005) Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. Trends Genet 21:633–639

    Article  PubMed  CAS  Google Scholar 

  • Thorington G, Margulis L (1981) Hydra-viridis – transfer of metabolites between Hydra and symbiotic algae. Biol Bull 160:175–188

    Article  PubMed  CAS  Google Scholar 

  • Trembley A (1744) Mémoires, Pour Servir à l´Histoire d´un Genre de Polypes d´Eau Douce, à Bras en Frome de Cornes. Verbeek, Leiden

    Google Scholar 

  • Wilson DS, Sober E (1989) Reviving the superorganism. J Theor Biol 136:337–356

    Article  PubMed  CAS  Google Scholar 

  • Wittlieb J, Khalturin K, Lohmann JU, Anton-Erxleben F, Bosch TC (2006) Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc Natl Acad Sci USA 103:6208–6211

    Article  PubMed  CAS  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Research in our laboratory is supported in parts by grants from the Deutsche Forschungsgemeinschaft (DFG) and grants from the DFG Cluster of Excellence programs “The Future Ocean” and “Inflammation at Interfaces.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Augustin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Augustin, R., Fraune, S., Franzenburg, S., Bosch, T.C.G. (2012). Where Simplicity Meets Complexity: Hydra, a Model for Host–Microbe Interactions. In: Mylonakis, E., Ausubel, F., Gilmore, M., Casadevall, A. (eds) Recent Advances on Model Hosts. Advances in Experimental Medicine and Biology, vol 710. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5638-5_8

Download citation

Publish with us

Policies and ethics