Skip to main content

Ecological Niche Modeling as a Tool for Understanding Distributions and Interactions of Vectors, Hosts, and Etiologic Agents of Chagas Disease

  • Conference paper
  • First Online:
Recent Advances on Model Hosts

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 710))

Abstract

Chagas disease, or American Trypanosomiasis, is a tropical parasitic disease caused by the flagellate protozoan Trypanosoma cruzi, which is in turn transmitted by blood-sucking insects of the subfamily Triatominae (family Reduviidae). Because no drugs or vaccines are available to cure Chagas disease in its chronic phase, vectorial control (i.e., insecticide spraying) constitutes the principal means by which to impair Chagas disease transmission. Environmental and social factors have caused changes in the epidemiology of this disease—it was originally restricted to Latin America, but is now becoming a global heath concern in non-endemic areas as a consequence of human migrations. In Brazil, despite the fact that the most effective vector has been controlled, other triatomine species infest and colonize domiciliary habitats and can transmit the pathogen. As a consequence, Chagas disease transmission continues: the prevalence of the disease remains at ∼12 million people, with ∼200,000 new cases per year in 15 countries of Latin America, making control actions still necessary. Understanding the environmental requirements and geographic distributions of vectors is key to guiding control measures, and understanding better epidemiologic aspects of the disease. Ecologic niche modeling is a relatively new tool that permits such insights—as a consequence, here, we present an overview of insights gained using this approach in understanding of Chagas disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida CE, Vinhaes MC, Almeida JR, Silveira AC, Costa J (2000) Monitoring the domiciliary and peridomiciliary invasion process of Triatoma rubrovaria in the state of Rio Grande do Sul, Brazil. Mem Inst Oswaldo Cruz 95:761–768

    PubMed  CAS  Google Scholar 

  • Almeida CE, Folly-Ramos E, Peterson AT, Lima-Neiva V, Gumiel M, Duarte R, Lima MM, Locks M, Beltrão M, Costa J (2009) Could Triatoma sherlocki be vectoring Chagas disease in small mining communities in Bahia, Brazil? Med Vet Entomol 23:410–417

    Article  PubMed  CAS  Google Scholar 

  • Batista TA, Gurgel-Gonçalves R (2009) Ecological niche modelling and differentiation between Rhodnius neglectus Lent, 1954 and Rhodnius nasutus Stål, 1859 (Hemiptera: Reduviidae: Triatominae) in Brazil. Mem Inst Oswaldo Cruz 104:1165–1170

    Article  PubMed  Google Scholar 

  • Beard CB, Pye G, Steurer FJ, Salinas Y, Campman R, Peterson AT, Ramsey JM, Wirtz RA, Robinson LE (2003) Chagas disease in a domestic transmission cycle in southern Texas, USA. Emerg Infect Dis 9:103–105

    PubMed  Google Scholar 

  • Briceno-Leon R, Galvan MJ (2007) The social determinants of Chagas disease and the transformations of Latin America. Mem Inst Oswaldo Cruz 102:109–112

    Article  PubMed  Google Scholar 

  • Chagas C (1909) Nova tripanozomiaze humana: estudos sobre a morfologia e o ciclo evolutivo do Schizotrypanum cruzi n. gen. n. sp., agente etiologico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz 1:159–218

    Article  Google Scholar 

  • Costa J, Felix M (2007) Triatoma juazeirensis sp. nov. from the state of Bahia, northeastern Brazil (Hemiptera:Reduviidae: Triatominae). Mem Inst Oswaldo Cruz 102:87–90

    Article  PubMed  Google Scholar 

  • Costa J, Lorenzo M (2009) Biology, diversity and strategies for the monitoring and control of triatomines – Chagas disease vectors. Mem Inst Oswaldo Cruz 104(suppl):46–51

    PubMed  Google Scholar 

  • Costa J, Barth OM, Marchon-Silva V, Almeida CE, Freitas-Sibajev MG, Panzera F (1997a) Morphological studies on the Triatoma brasiliensis Neiva, 1911 (Hemiptera, Reduviidae, Triatominae) – genital structures and eggs of different chromatic forms. Mem Inst Oswaldo Cruz 92:493–498

    Article  Google Scholar 

  • Costa J, Freitas-Sibajev MG, Marchon-Silva V, Pires MQ, Pacheco R (1997b) Isoenzymes detect variation in populations of Triatoma brasiliensis (Hemiptera–Reduviidae–Triatominae). Mem Inst Oswaldo Cruz 92:459–464

    Article  PubMed  CAS  Google Scholar 

  • Costa J, Peterson AT, Beard CB (2002) Ecologic niche modeling and differentiation of populations of Triatoma brasiliensis Neiva, 1911, the most important Chagas disease vector in northeastern Brazil (Hemiptera, Reduviidae, Triatominae). Am J Trop Med Hyg 67:516–520

    PubMed  Google Scholar 

  • Costa J, Almeida CE, Dotson EM, Lins A, Vinhaes M, Silveira AC, Beard CB (2003) The epidemiologic importance of Triatoma brasiliensis as a Chagas disease vector in Brazil: a revision of domiciliary captures during 1993–1999. Mem Inst Oswaldo Cruz 98:443–449

    Article  PubMed  Google Scholar 

  • Costa J, Argolo AM, Felix M (2006) Redescription of Triatoma melanica Neiva & Lent, 1941, new status (Hemiptera: Reduviidae: Triatominae). Zootaxa 1385:47–52

    Google Scholar 

  • Costa J, Peterson AT, Dujardin JP (2009) Morphological evidence suggests homoploid hybridization as a possible mode of speciation in the Triatominae (Hemiptera: Heteroptera: Reduviidae). Infect Genet Evol 9:263–270

    Article  PubMed  CAS  Google Scholar 

  • Costa J, Dornak L, Almeida CE, Peterson TA (2010) Fine scale predictions on T. brasiliensis complex. Angean conferences series, 52:55. I International conference on model host, Crete, Greece

    Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettman F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J, Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Galvão C, Carcavallo R, Rocha DS, Jurberg J (2003) A checklist of the current valid species of the subfamily Triatominae Jeannel, 1919 (Hemiptera: Reduviidae) and their geografical distribution with nomenclatural and taxonomic notes. Zootaxa 202:1–36

    Google Scholar 

  • Grinnell J (1917) Field tests of theories concerning distributional control. Am Naturalist 51:115–128

    Article  Google Scholar 

  • Guhl F (2007) Chagas disease in Andean countries. Mem do Inst Oswaldo Cruz 102(suppl 1):1–9

    Google Scholar 

  • Ibarra-Cerdeña CN, Sánchez-Cordero V, Peterson AT, Ramsey JM (2009) Ecology of North American Triatominae. Acta Trop 110:178–186

    Article  PubMed  Google Scholar 

  • Lash RL, Brunsell N, Peterson AT (2008) Spatiotemporal environmental triggers of Ebola and Marburg virus transmission. GeoCarto Int 23:451–466

    Article  Google Scholar 

  • Lent H (1942) Estudos sobre os triatomíneos do estado do Rio Grande do Sul, com descrição de uma espécie nova. Rev Bras Biol 2:219–231

    Google Scholar 

  • Lent H, Wygodzinsky P (1979) Revision of the Triatominae (Hemiptera: Reduviidae) and their significance as vector of Chagas disease. Bull Am Mus Nat Hist 163:123–520

    Google Scholar 

  • López-Cárdenas J, Gonzalez-Bravo FE, Salazar-Schettino PM, Gallaga-Solorzano JC, Ramírez-Barba E, Martínez-Méndez J, Sänchez-Cordero V, Peterson AT, Ramsey JM (2005) Fine-scale predictions of distributions of Chagas disease vectors in the state of Guanajuato, Mexico. J Med Entomol 42:1068–1081

    Article  PubMed  Google Scholar 

  • Mendonça VJ, Silva MTA, Araújo RF, Martins Júnior J, Bacci Júnior M, Almeida CE, Costa J, Graminha MAS, Cicarelli RMB, Rosa JA (2009) Phylogeny of Triatoma sherlocki (Hemiptera: Reduviidae: Triatominae) inferred from two mitochondrial genes suggests its location within the Triatoma brasiliensis complex. Am J Trop Med Hyg 81:858–864

    Article  PubMed  Google Scholar 

  • Monteiro FA, Donnelly MJ, Beard CB, Costa J (2004) Nested clade and phylogeographic analyses of the Chagas disease vector Triatoma brasiliensis in northeast Brazil. Mol Phylogenet Evol 32:46–56

    Article  PubMed  Google Scholar 

  • Morel CM, Lazdins J (2003) Chagas disease. Nat Rev Microbiol 1:14–15

    Article  PubMed  Google Scholar 

  • Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:419–433

    Article  PubMed  Google Scholar 

  • Peterson AT (2006a) Ecological niche modeling and spatial patterns of disease transmission. Emerg Infect Dis 12:1822–1826

    Article  PubMed  Google Scholar 

  • Peterson AT (2006b) Uses and requirements of ecological niche models and related distributional models. Biodiv Inf 3:59–72

    Google Scholar 

  • Peterson AT (2007) Ecological niche modelling and understanding the geography of disease transmission. Vet Ital 43:393–400

    PubMed  Google Scholar 

  • Peterson AT (2008a) Biogeography of diseases: a framework for analysis. Naturwissenschaften 45:483–491

    Article  Google Scholar 

  • Peterson AT (2008b) Improving methods for reporting spatial epidemiologic data. Emerg Infect Dis 14:1335–1337

    Article  PubMed  Google Scholar 

  • Peterson AT, Shaw JJ (2003) Lutzomyia vectors for cutaneous leishmaniasis in southern Brazil: ecological niche models, predicted geographic distributions, and climate change effects. Int J Parasitol 33:919–931

    Article  PubMed  Google Scholar 

  • Peterson AT, Sánchez-Cordero V, Beard CB, Ramsey JM (2002a) Ecological niche modeling and potential reservoirs for Chagas disease, Mexico. Emerg Infect Dis 8:662–667

    PubMed  Google Scholar 

  • Peterson AT, Stockwell DRB, Kluza DA (2002b) Distributional prediction based on ecological niche modeling of primary occurrence data. In: Scott JM (ed) Predicting species occurrences: issues of scale and accuracy. Island Press, Washington, D.C

    Google Scholar 

  • Peterson AT, Martínez-Campos C, Nakazawa Y, Martínez-Meyer E (2005) Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases. Trans R Soc Trop Med Hyg 99:647–655

    Article  PubMed  Google Scholar 

  • Peterson AT, Lash RR, Carroll DS, Johnson KM (2006) Geographic potential for outbreaks of Marburg hemorrhagic fever. Am J Trop Med Hyg 75:9–15

    PubMed  Google Scholar 

  • Peterson AT, Papes M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modelling. Ecol Model 213:63–72

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Reed KD, Meece JK, Archer JR, Peterson AT (2008) Ecologic niche modeling of Blastomyces dermatitidis in Wisconsin. PLoS One 3:e2034

    Article  PubMed  Google Scholar 

  • Rosa-Freitas MG, Tsouris P, Peterson AT, Honório NA, Barros FSMD, Aguiar DBD, Gurgel HDC, Arruda MED, Vasconcelos SD, Luitgards-Moura JF (2007) An ecoregional classification for the state of Roraima, Brazil: the importance of landscape in malaria biology. Mem Inst Oswaldo Cruz 102:349–358

    Article  PubMed  Google Scholar 

  • Ryckman RE (1962) Biosystematics and hosts of the Triatoma complex in North America. Univ Calif Publ Ent 27:93–239

    Google Scholar 

  • Sandoval-Ruiz CA, Zumaquero-Rios JL, Rojas-Soto OR (2008) Predicting geographic and ecological distributions of triatomine species in the southern Mexican state of Puebla using ecological niche modeling. J Med Entomol 45:540–546

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Strutz SE, Frank DM, Rivaldi CL, Sissel B, Sánchez-Cordero V (2010) Chagas disease risk in Texas. PLoS Negl Trop Dis 4:e836

    Article  Google Scholar 

  • Schmunis GA, Yadon ZE (2010) Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop 115:14–21

    Article  PubMed  Google Scholar 

  • Schofield CJ, Galvão C (2009) Classification, evolution and species groups within the Triatominae. Acta Trop 110:88–100

    Article  PubMed  CAS  Google Scholar 

  • Silveira AC, Vinhaes MC (1999) Elimination of vector-borne transmission of Chagas disease. Mem Inst Oswaldo Cruz 94(suppl I):405–411

    Article  PubMed  Google Scholar 

  • Soberón J (2010) Niche and area of distribution modeling: a population ecology perspective. Ecography 33:159–167

    Article  Google Scholar 

  • Soberón J, Peterson AT (2007) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiv Inf 2:1–10

    Google Scholar 

  • Stockwell DRB, Peters DP (1999) The GARP modelling system: problems and solutions to automated spatial prediction. Int J Geogr Inf Syst 13:143–158

    Article  Google Scholar 

  • World Health Organization (WHO) (2007) Disponível em: [http://www.who.org] Accessed in June de 2010

Download references

Acknowledgements

Vanessa Lima Neiva for editing the references and Heloisa Diniz, Serviço de Produção e Tratamento de Imagens do Instituto Owaldo Cruz, for editing the figures and assistance in the preparation of the plates. CNPq for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Costa, J., Peterson, A.T. (2012). Ecological Niche Modeling as a Tool for Understanding Distributions and Interactions of Vectors, Hosts, and Etiologic Agents of Chagas Disease. In: Mylonakis, E., Ausubel, F., Gilmore, M., Casadevall, A. (eds) Recent Advances on Model Hosts. Advances in Experimental Medicine and Biology, vol 710. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5638-5_7

Download citation

Publish with us

Policies and ethics