Skip to main content

KIR/HLA: Genetic Clues for a Role of NK Cells in the Control of HIV

  • Conference paper
  • First Online:
Crossroads between Innate and Adaptive Immunity III

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 780))

Abstract

Early events following HIV infections determine the course of disease progression. Mounting evidence suggests that antiviral immune responses induced soon after infection, prior to the induction of adaptive immune responses, are key to early control of viral infection. Among the early innate immune effector cells, natural killer (NK) cells represent a unique subset of lymphoctyes that do not express an antigen specific receptor. Rather, these cells integrate signals from an arsenal of non-specific inhibitory and activating receptors that are expressed on their cell surface. As such, these cells are classified as cells of the innate immune system, and they are able to lyse certain tumor targets and infected cells without the need for prior antigen sensitization. Over the past decade, accumulating evidence suggests that these innate lymphocytes may not be as innate as once believed, but that individual NK cell clones may show some target cell specificity, and play a critical early role following infection with HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633–640

    Article  PubMed  CAS  Google Scholar 

  2. Moretta A, Bottino C, Mingari MC, Biassoni R, Moretta L (2002) What is a natural killer cell? Nat Immunol 3:6–8

    Article  PubMed  CAS  Google Scholar 

  3. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274. doi:10.1146/annurev.immunol.23.021704.115526

    Article  PubMed  CAS  Google Scholar 

  4. Cerwenka A, Lanier LL (2001) Natural killer cells, viruses and cancer. Nat Rev Immunol 1:41–49

    Article  PubMed  CAS  Google Scholar 

  5. Cooper MA, Fehniger TA, Fuchs A, Colonna M, Caligiuri MA (2004) NK cell and DC interactions. Trends Immunol 25:47–52

    Article  PubMed  CAS  Google Scholar 

  6. Gerosa F et al (2002) Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 195:327–333

    Article  PubMed  CAS  Google Scholar 

  7. Gerosa F et al (2005) The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions. J Immunol 174:727–734

    PubMed  CAS  Google Scholar 

  8. Chan A et al (2007) CD56bright human NK cells differentiate into CD56dim cells: role of contact with peripheral fibroblasts. J Immunol 179:89–94. doi:179/1/89 [pii]

    PubMed  CAS  Google Scholar 

  9. Romagnani C et al (2007) CD56brightCD16- killer Ig-like receptor- NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J Immunol 178:4947–4955. doi:178/8/4947 [pii]

    PubMed  CAS  Google Scholar 

  10. Mavilio D et al (2005) Characterization of CD56−/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc Natl Acad Sci USA 102:2886–2891

    Article  PubMed  CAS  Google Scholar 

  11. Alter G et al (2005) Sequential deregulation of NK cell subset distribution and function starting in acute HIV-1 infection. Blood 106(10):3366–3369

    Article  PubMed  CAS  Google Scholar 

  12. Ljunggren HG, Karre K (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11:237–244

    Article  PubMed  CAS  Google Scholar 

  13. Karre K, Ljunggren HG, Piontek G, Kiessling R (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319:675–678. doi:10.1038/319675a0

    Article  PubMed  CAS  Google Scholar 

  14. Moretta A et al (1993) P58 molecules as putative receptors for major histocompatibility complex (MHC) class I molecules in human natural killer (NK) cells. Anti-p58 antibodies reconstitute lysis of MHC class I-protected cells in NK clones displaying different specificities. J Exp Med 178:597–604

    Article  PubMed  CAS  Google Scholar 

  15. Cerwenka A, Lanier LL (2001) Ligands for natural killer cell receptors: redundancy or specificity. Immunol Rev 181:158–169

    Article  PubMed  CAS  Google Scholar 

  16. Kim S et al (2005) Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436:713. doi:nature03847 [pii] 10.1038/nature03847

    Google Scholar 

  17. Anfossi N et al (2006) Human NK cell education by inhibitory receptors for MHC class I. Immunity 25:331–342. doi:S1074-7613(06)00348-7 [pii] 10.1016/j.immuni.2006.06.013

    Article  PubMed  CAS  Google Scholar 

  18. Yu J et al (2007) Hierarchy of the human natural killer cell response is determined by class and quantity of inhibitory receptors for self-HLA-B and HLA-C ligands. J Immunol 179:5977–5989. doi:179/9/5977 [pii]

    PubMed  CAS  Google Scholar 

  19. Brodin P, Lakshmikanth T, Johansson S, Karre K, Hoglund P (2009) The strength of inhibitory input during education quantitatively tunes the functional responsiveness of individual natural killer cells. Blood 113:2434–2441. doi:blood-2008-05-156836 [pii] 10.1182/blood-2008-05-156836

    Article  PubMed  CAS  Google Scholar 

  20. Kim S et al (2008) HLA alleles determine differences in human natural killer cell responsiveness and potency. Proc Natl Acad Sci USA 105:3053–3058

    Article  PubMed  CAS  Google Scholar 

  21. Yawata M et al (2008) MHC class I-specific inhibitory receptors and their ligands structure diverse human NK-cell repertoires toward a balance of missing self-response. Blood 112:2369–2380. doi:blood-2008-03-143727 [pii] 10.1182/blood-2008-03-143727

    Article  PubMed  CAS  Google Scholar 

  22. Pessino A et al (1998) Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J Exp Med 188:953–960

    Article  PubMed  CAS  Google Scholar 

  23. Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9:495–502. doi:ni1581[pii] 10.1038/ni1581

    Article  PubMed  CAS  Google Scholar 

  24. Freud AG, Caligiuri MA (2006) Human natural killer cell development. Immunol Rev 214:56–72. doi:IMR451 [pii] 10.1111/j.1600-065X.2006.00451.x

    Article  PubMed  CAS  Google Scholar 

  25. Cao W et al (2008) Four novel ULBP splice variants are ligands for human NKG2D. Int Immunol 20:981–991. doi:dxn057 [pii] 10.1093/intimm/dxn057

    Article  PubMed  CAS  Google Scholar 

  26. Jinushi M et al (2003) Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid. Int J Cancer 104:354–361. doi:10.1002/ijc.10966

    Article  PubMed  CAS  Google Scholar 

  27. Ward JP, Bonaparte MI, Barker E (2004) HLA-C and HLA-E reduce antibody-dependent natural killer cell-mediated cytotoxicity of HIV-infected primary T cell blasts. AIDS 18:1769–1779

    Article  PubMed  Google Scholar 

  28. Cerboni C et al (2007) Human immunodeficiency virus 1 Nef protein downmodulates the ligands of the activating receptor NKG2D and inhibits natural killer cell-mediated cytotoxicity. J Gen Virol 88:242–250. doi:88/1/242 [pii] 10.1099/vir.0.82125-0

    Article  PubMed  CAS  Google Scholar 

  29. Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738. doi:10.1038/nature01112, nature01112 [pii]

    Article  PubMed  CAS  Google Scholar 

  30. Alter G et al (2010) IL-10 induces aberrant deletion of dendritic cells by natural killer cells in the context of HIV infection. J Clin Invest 120:1905–1913. doi:40913 [pii] 10.1172/JCI40913

    Article  PubMed  CAS  Google Scholar 

  31. Bashirova AA, Martin MP, McVicar DW, Carrington M (2006) The killer immunoglobulin-like receptor gene cluster: tuning the genome for defense (*). Annu Rev Genomics Hum Genet 7:277–300

    Article  PubMed  CAS  Google Scholar 

  32. Lanier LL (1998) NK cell receptors. Annu Rev Immunol 16:359–393

    Article  PubMed  CAS  Google Scholar 

  33. Carrington M, Norman P (2003) The KIR gene cluster. NCBI, Bethesda

    Google Scholar 

  34. Anderson SK (2006) Transcriptional regulation of NK cell receptors. Curr Top Microbiol Immunol 298:59–75

    Article  PubMed  CAS  Google Scholar 

  35. Stewart CA et al (2005) Recognition of peptide-MHC class I complexes by activating killer immunoglobulin-like receptors. Proc Natl Acad Sci USA 102:13224–13229. doi:0503594102 [pii] 10.1073/pnas.0503594102

    Article  PubMed  CAS  Google Scholar 

  36. Boyington JC, Motyka SA, Schuck P, Brooks AG, Sun PD (2000) Crystal structure of an NK cell immunoglobulin-like receptor in complex with its class I MHC ligand. Nature 405:537–543

    Article  PubMed  CAS  Google Scholar 

  37. Fan QR, Long EO, Wiley DC (2001) Crystal structure of the human natural killer cell inhibitory receptor KIR2DL1-HLA-Cw4 complex. Nat Immunol 2:452–460. doi:10.1038/87766, 87766 [pii]

    PubMed  CAS  Google Scholar 

  38. Malnati MS et al (1995) Peptide specificity in the recognition of MHC class I by natural killer cell clones. Science 267:1016–1018

    Article  PubMed  CAS  Google Scholar 

  39. Correa I, Raulet DH (1995) Binding of diverse peptides to MHC class I molecules inhibits target cell lysis by activated natural killer cells. Immunity 2:61–71

    Article  PubMed  CAS  Google Scholar 

  40. Peruzzi M, Parker KC, Long EO, Malnati MS (1996) Peptide sequence requirements for the recognition of HLA-B*2705 by specific natural killer cells. J Immunol 157:3350–3356

    PubMed  CAS  Google Scholar 

  41. Rajagopalan S, Long EO (1997) The direct binding of a p58 killer cell inhibitory receptor to human histocompatibility leukocyte antigen (HLA)-Cw4 exhibits peptide selectivity. J Exp Med 185:1523–1528

    Article  PubMed  CAS  Google Scholar 

  42. Zappacosta F, Borrego F, Brooks AG, Parker KC, Coligan JE (1997) Peptides isolated from HLA-Cw*0304 confer different degrees of protection from natural killer cell-mediated lysis. Proc Natl Acad Sci USA 94:6313–6318

    Article  PubMed  CAS  Google Scholar 

  43. Fadda L et al (2010) Peptide antagonism as a mechanism for NK cell activation. Proc Natl Acad Sci USA 107:10160–10165. doi:0913745107 [pii] 10.1073/pnas.0913745107

    Article  PubMed  CAS  Google Scholar 

  44. Fellay J et al (2007) A whole-genome association study of major determinants for host control of HIV-1. Science 317:944–947. doi:1143767 [pii] 10.1126/science.1143767

    Article  PubMed  CAS  Google Scholar 

  45. Thomas R et al (2009) HLA-C cell surface expression and control of HIV/AIDS correlate with a variant upstream of HLA-C. Nat Genet 41:1290–1294. doi:ng.486 [pii] 10.1038/ng.486

    Article  PubMed  CAS  Google Scholar 

  46. Vitale M, Sivori S, Pende D, Moretta L, Moretta A (1995) Coexpression of two functionally independent p58 inhibitory receptors in human natural killer cell clones results in the inability to kill all normal allogeneic target cells. Proc Natl Acad Sci USA 92:3536–3540

    Article  PubMed  CAS  Google Scholar 

  47. Carrington M, O’Brien SJ (2003) The influence of HLA genotype on AIDS. Annu Rev Med 54:535–551

    Article  PubMed  CAS  Google Scholar 

  48. Flores-Villanueva PO et al (2001) Control of HIV-1 viremia and protection from AIDS are associated with HLA-Bw4 homozygosity. Proc Natl Acad Sci USA 98:5140–5145

    Article  PubMed  CAS  Google Scholar 

  49. Martin MP et al (2002) Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 31:429–434

    PubMed  CAS  Google Scholar 

  50. Alter G et al (2007) Differential natural killer cell-mediated inhibition of HIV-1 replication based on distinct KIR/HLA subtypes. J Exp Med 204:3027–3036. doi:jem.20070695 [pii] 10.1084/jem.20070695

    Article  PubMed  CAS  Google Scholar 

  51. Carrington M, Martin MP, van Bergen J (2008) KIR-HLA intercourse in HIV disease. Trends Microbiol 16(12):620–627. Epub 2008 Oct 29. PMID: 18976921

    Google Scholar 

  52. Martin MP et al (2007) Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat Genet 39:733–740. doi:ng2035 [pii] 10.1038/ng2035

    Article  PubMed  CAS  Google Scholar 

  53. De Maria A et al (2003) The impaired NK cell cytolytic function in viremic HIV-1 infection is associated with a reduced surface expression of natural cytotoxicity receptors (NKp46, NKp30 and NKp44). Eur J Immunol 33:2410–2418

    Article  PubMed  Google Scholar 

  54. Mela CM et al (2005) Switch from inhibitory to activating NKG2 receptor expression in HIV-1 infection: lack of reversion with highly active antiretroviral therapy. AIDS 19:1761–1769

    Article  PubMed  CAS  Google Scholar 

  55. Mavilio D et al (2003) Natural killer cells in HIV-1 infection: dichotomous effects of viremia on inhibitory and activating receptors and their functional correlates. Proc Natl Acad Sci USA 100:15011–15016

    Article  PubMed  CAS  Google Scholar 

  56. Long BR et al (2008) Conferral of enhanced natural killer cell function by KIR3DS1 in early human immunodeficiency virus type 1 infection. J Virol 82:4785–4792. doi:JVI.02449-07 [pii] 10.1128/JVI.02449-07

    Article  PubMed  CAS  Google Scholar 

  57. Alter G et al (2009) HLA class I subtype-dependent expansion of KIR3DS1+ and KIR3DL1+ NK cells during acute human immunodeficiency virus type 1 infection. J Virol 83:6798–6805. doi:JVI.00256-09 [pii] 10.1128/JVI.00256-09

    Article  PubMed  CAS  Google Scholar 

  58. Boulet S et al (2010) HIV protective KIR3DL1 and HLA-B genotypes influence NK cell function following stimulation with HLA-devoid cells. J Immunol 184:2057–2064. doi:jimmunol.0902621 [pii] 10.4049/jimmunol.0902621

    Article  PubMed  CAS  Google Scholar 

  59. Yokoyama WM, Kim S (2006) Licensing of natural killer cells by self-major histocompatibility complex class I. Immunol Rev 214:143–154

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galit Alter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Businees Media, LLC

About this paper

Cite this paper

Fadda, L., Alter, G. (2011). KIR/HLA: Genetic Clues for a Role of NK Cells in the Control of HIV. In: Pulendran, B., Katsikis, P., Schoenberger, S. (eds) Crossroads between Innate and Adaptive Immunity III. Advances in Experimental Medicine and Biology, vol 780. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5632-3_3

Download citation

Publish with us

Policies and ethics