Skip to main content

Drug Metabolizing Enzymes

  • Chapter
  • First Online:
Book cover Drug Metabolism and Pharmacokinetics Quick Guide

Abstract

Metabolism is the major elimination pathway of a drug from the body. Drug metabolizing enzymes (DMEs) are mainly present in the liver, intestine, and blood and are responsible for converting lipophilic drugs to more hydrophilic compounds to facilitate their excretion from the body. DMEs are classified as either Phase I or Phase II enzymes. Phase I DMEs are responsible for oxidation, reduction, and hydrolysis, and Phase II DME are responsible for conjugation (not necessarily sequential). Here we discuss the DMEs involved in Phase I and Phase II reactions, their subcellular locations, cofactors, organ distributions, mechanisms of reactions, and typical substrates and inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABT:

Aminobenzotriazole

ADH:

Alcohol dehydrogenase

AKR:

Aldo-keto reductase

ALDH:

Aldehyde dehydrogenase

AO:

Aldehyde oxidase

AZT:

3′-Azido-3′-deoxythimidine

BSO:

l-Buthionine-sulfoximine

CDNB:

1-Chloro-2,4-dinitrobenzene

CL:

Clearance

DCNP:

2,6-Dichloro-4-nitrophenol

DME:

Drug metabolizing enzyme

EC:

Enzyme classification number based on enzyme function

EH:

Epoxide hydrolase

ER:

Endoplasmic reticulum (i.e., microsomes)

FAD:

Flavin adenine dinucleotide

FMO:

Flavin-containing monooxygenase

GI:

Gastrointestinal

GST:

Glutathione S-transferase

LM:

Liver microsomes

MAO:

Monoamine oxidase

mCPBA:

m-Chloroperoxybenzoic acid

NAC:

N-Acetylcysteine

NAD:

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate

NAT:

N-Acetyltransferase

P450:

Cytochrome P450

PAPS:

3′-Phosphoadenosine-5′-phosphosulfate

PM:

Poor metabolizer

NQO:

NADPH:quinone reductase

SAM:

S-Adenosyl methionine

SULT:

Sulfotransferase

UDPGA:

Uridine diphosphoglucuronic acid

UGT:

Uridine diphosphate glucuronosyltransferase

XDH:

Xanthine dehydrogenase

XO:

Xanthine oxidase

References

  • Balani SK, Zhu T, Yang TJ et al (2002) Effective dosing regimen of 1-aminobenzotriazole for inhibition of antipyrine clearance in rats, dogs, and monkeys. Drug Metab Dispos 30:1059–1062

    Article  PubMed  CAS  Google Scholar 

  • Barski OA, Tipparaju M, Bhatnagar A (2008) The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 40(4):553–624

    Article  PubMed  CAS  Google Scholar 

  • Benedetti MS, Whomsley R, Baltes E (2006) Involvement of enzymes other than CYPs in the oxidative metabolism of xenobiotics. Expert Opin Drug Metab Toxicol 2:895–921

    Article  Google Scholar 

  • Cashman JR (2008) Role of flavin-containing monooxygenase in drug development. Expert Opin Drug Metab Toxicol 4(12):1507–1521

    Article  PubMed  CAS  Google Scholar 

  • Diamond S, Boer J, Maduskuie T et al (2010) Species-specific metabolism of SGX523 by aldehyde oxidase and the toxicological implications. Drug Metab Dispos 38:1277–1285

    Article  PubMed  CAS  Google Scholar 

  • Draganov DI, Teiber JF, Speelman A et al (2005) Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res 46:1239–1247

    Article  PubMed  CAS  Google Scholar 

  • Driscoll JP, Aliagas I, Harries JJ, Halladay JS, Khatib-Shahidi S, Deese A, Segraves N, Khojasteh-Bakht SC (2010) Formation of a quinoneimine intermediate of 4-fluoro-N-methylaniline by FMO1: carbon oxidation plus defluorination Chem Res Tox 23(5):861–863

    Article  Google Scholar 

  • Janmohamed A, Hernandez D, Phillips IR, Shephand (2004) cell-, tissue, sex- and developmental stage-specific expression of mous flavin-containing monooxygenases (Fmos) Biochem Pharmacol 68(1)73–83

    Google Scholar 

  • Martignoni M, Groothuis GM, de Kanter R (2006) Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2:875–894

    Article  PubMed  CAS  Google Scholar 

  • Mathew N, Muthuswami Kalyanasundaram M, Balaraman K (2006) Glutathione S-transferase (GST) inhibitors. Expert Opin Ther Pat 16:431–444

    Article  CAS  Google Scholar 

  • Morisseau C, Hammock BD (2005) Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles. Annu Rev Pharmacol Toxicol 45:311–333

    Article  PubMed  CAS  Google Scholar 

  • Obach RS, Huynh P, Allen MC, Beedham C (2004) The human liver aldehyde oxidase: inhibition by 239 drugs. J Clin Pharmacol 44:7–19

    Article  PubMed  CAS  Google Scholar 

  • Oleson L, Court MH (2008) Effect of the beta-glucuronidase inhibitor saccharolactone on glucuronidation by human tissue microsomes and recombinant UDP-glucuronosyltransferases. J Pharm Pharmacol 60:1175–1182

    Article  PubMed  CAS  Google Scholar 

  • Paine MF (2006) The human intestinal cytochrome P450 “pie”. Drug Metab Dispos 34:880–886

    Article  PubMed  CAS  Google Scholar 

  • Redinbo MR, Bencharit S, Potter PM (2003) Human carboxylesterase 1: from drug metabolism to drug discovery. Biochem Soc Trans 31:620–624

    Article  PubMed  CAS  Google Scholar 

  • Rendic S, Di Carlo FJ (1997) Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 29(1–2):413–580

    Article  PubMed  CAS  Google Scholar 

  • Rostami-Hodjegan A, Tucker GT (2007) Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov 6(2):140–148

    Article  PubMed  CAS  Google Scholar 

  • Torres RA, Korzekwa KR, McMasters DR et al (2007) Use of density functional calculations to predict the regioselectivity of drugs and molecules metabolized by aldehyde oxidase. J Med Chem 50:4642–4647

    Article  PubMed  CAS  Google Scholar 

  • Uchaipichat V, Mackenzie PI, Elliot DJ et al (2006) Selectivity of substrate (trifluoperazine) and inhibitor (amitriptyline, androsterone, canrenoic acid, hecogenin, phenylbutazone, quinidine, quinine, and sulfinpyrazone) “probes” for human udp-glucuronosyltransferases. Drug Metab Dispos 34(3):449–456

    PubMed  CAS  Google Scholar 

  • van Himbergen TM, van Tits LJH, Roest M et al (2006) The story of poN1: how an organophosphate-hydrolysing enzyme is becoming a player in cardiovascular medicine. Neth J Med 64(2):34–38

    PubMed  Google Scholar 

  • Vaz ADN, Pernecky SJ, Raner GM et al (1996) Peroxo-iron and oxenoid-iron species as alternative oxygenating agents in cytochrome P450-catalyzed reactions: switching by threonine-302 to alanine mutagenesis of cytochrome P450 2B4. Proc Natl Acad Sci USA 93:4644–4648

    Article  PubMed  CAS  Google Scholar 

  • Williams RT (1959) Detoxication mechanisms: the metabolism and detoxification of drugs, toxic substances and other organic compounds. Wiley, New York

    Google Scholar 

  • Williams JA, Hyland R, Jones BC et al (2004) Drug–drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 32:1201–1208

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Cashman JR (2006) Quantitiative analysis of FMO gene mRNA levels in human tissues. Drug Metab Dispos 34:19–26

    Article  PubMed  Google Scholar 

  • Zientek M, Jiang Y, Youdim K et al (2010) In vitro-in vivo correlation for intrinsic clearance for drugs metabolized by human aldehyde oxidase. Drug Metab Dispos 38:1322–1327

    Article  PubMed  CAS  Google Scholar 

Additional Reading

  • Ortiz de Montellano PR (ed) (2004) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum, New York

    Google Scholar 

  • Parkinson A, Ogilivie BW (2007) Biotransformation of xenobiotics. In: Klaassen CD (ed) Casarett & Doull’s toxicology: the basic science of poisons, 7th edn. McGraw-Hill, New York

    Google Scholar 

  • Testa B, Krämer SD (2010) The biochemistry of drug metabolism: two volume set. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  • Uetrecht JP, Trager W (2007) Drug metabolism: chemical and enzymatic aspects. Informa Healthcare, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Cyrus Khojasteh .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Khojasteh, S.C., Wong, H., Hop, C.E.C.A. (2011). Drug Metabolizing Enzymes. In: Drug Metabolism and Pharmacokinetics Quick Guide. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5629-3_2

Download citation

Publish with us

Policies and ethics