The Svalbard Glaucous Gull as Bioindicator Species in the European Arctic: Insight from 35 Years of Contaminants Research

Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 205)


The Svalbard archipelago (Norway) of the European Arctic is an important sink for anthropogenic chemicals transported via atmospheric and oceanic currents from distant sites of production and use.


Basal Metabolic Rate PBDE Congener Contaminant Exposure Maternal Transfer Svalbard Archipelago 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Berge JA, Brevik EM, Bjørge A, Følsvik N, Gabrielsen GW, Wolkers H (2004) Organotins in marine mammals and seabirds from Norwegian territory. J Environ Monit 6:108–112.CrossRefGoogle Scholar
  2. Bourne WRP, Bogan JA (1972) Polychlorinated biphenyls in North Atlantic seabirds. Mar Pollut Bull 3:171–175.CrossRefGoogle Scholar
  3. Braune BM, Outridge PM, Fisk AT, Muir DC, Helm PA, Hobbs K, Hoekstra PF, Kuzyk ZA, Kwan M, Letcher RJ, Lockhart WL, Norstrom RJ, Stern GA, Stirling I (2005) Persistent organic pollutants and mercury in marine biota of the Canadian Arctic: an overview of spatial and temporal trends. Sci Total Environ 351–352:4–56.CrossRefGoogle Scholar
  4. Breuner CW, Patterson SH, Hahn TP (2008) In search of relationships between the acute adrenocortical response and fitness. Gen Comp Endocrinol 157:288–295.CrossRefGoogle Scholar
  5. Buntin JD (1996) Neural and hormonal regulation of parental behaviors in birds. Adv Stud Behav 25:161–213.CrossRefGoogle Scholar
  6. Bustnes JO, Erikstad KE, Bakken V, Mehlum F, Skaare JU (2000) Feeding ecology and the concentration of organochlorines (OCs) in glaucous gulls. Ecotoxicol 9:179–186.CrossRefGoogle Scholar
  7. Bustnes JO, Skaare JU, Erikstad KE, Bakken V, Mehlum F (2001a) Whole blood concentrations of organochlorines as a dose metric for studies of the glaucous gull (Larus hyperboreus). Environ Toxicol Chem 20:1046–1052.Google Scholar
  8. Bustnes JO, Bakken V, Erikstad KE, Mehlum F, Skaare JU (2001b) Patterns of incubation and nest site attentiveness in relation to organochlorine (PCB) contamination in glaucous gulls. J Appl Ecol 38:791–801.CrossRefGoogle Scholar
  9. Bustnes JO, Folstad I, Erikstad KE, Fjeld M, Miland ØO, Skaare JU (2002) Blood concentration of organochlorines and wing feather asymmetry in glaucous gull. Funct Ecol 16:617–622.CrossRefGoogle Scholar
  10. Bustnes JO, Bakken V, Skaare JU, Erikstad KE (2003a) Age and accumulation of persistent organochlorines: a study of arctic breeding glaucous gulls. Environ Toxicol Chem 22:2173–2179.CrossRefGoogle Scholar
  11. Bustnes JO, Erikstad KE, Skaare JU, Bakken V, Mehlum F (2003b) Ecological effects of organochlorine pollutants in the Arctic: a study of the glaucous gull. Ecol Applic 13:504–515.CrossRefGoogle Scholar
  12. Bustnes JO, Hanssen SA, Folstad I, Erikstad KE, Hasselquist D, Skaare JU (2004) Immune function and organochlorine pollutants in arctic breeding glaucous gull. Arch Environ Contam Toxicol 47:530–541.CrossRefGoogle Scholar
  13. Bustnes JO, Miland ØO, Fjeld M, Erikstad KE (2005) Relationships between ecological variables and four organochlorine pollutants in an arctic glaucous gull (Larus hyperboreus) population. Environ Pollut 136:175–185.CrossRefGoogle Scholar
  14. Bustnes JO (2006) Pinpointing potential causative agents in mixtures of persistent organic pollutants in observational field studies: a review of glaucous gull studies. J Toxicol Environ Health A 69:97–108.CrossRefGoogle Scholar
  15. Bustnes JO, Erikstad KE, Hanssen SA, Folstad I, Skaare JU (2006) Anti-parasite treatment removes negative effects of environmental pollutants on reproduction in an arctic seabird. Proc R Soc B 273:3117–3122.CrossRefGoogle Scholar
  16. Bustnes JO, Gabrielsen GW, Verreault J (Submitted) Temporal trends (1997–2006) of persistent organic pollutants in relation to biological and climatic factors: a study of glaucous gulls from the European Arctic. Environ Sci Technol.Google Scholar
  17. Chastel O, Lacroix A, Kersten M (2003) Pre-breeding energy requirements: thyroid hormone, metabolism and the timing of reproduction in house sparrows Passer domesticus. J Avian Biol 34:298–306.CrossRefGoogle Scholar
  18. Clarke GM (1995) Relationship between developmental stability and fitness: application for conservation biology. Conserv Biol 9:18–24.CrossRefGoogle Scholar
  19. Cleemann M, Riget F, Paulsen GB, Dietz R (2000) Organochlorines in Greenland glaucous gulls (Larus hyperboreus) and Icelandic gulls (Larus glaucoides). Sci Total Environ 245:117–130.CrossRefGoogle Scholar
  20. Daelemans FF, Mehlum F, Schepens PJ (1992) Polychlorinated biphenyls in two species of Arctic seabirds from the Svalbard area. Bull Environ Contam Toxicol 48:828–834.CrossRefGoogle Scholar
  21. de Wit CA, Fisk AT, Hobbs KE, Muir DCG, Gabrielsen GW, Kallenborn R, Krahn MM, Norstrom RJ, Skaare JU (2004) AMAP Assessment 2002: Persistent organic pollutants in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, xvi + 310 pp.Google Scholar
  22. de Wit CA, Alaee M, Muir DCG (2006) Levels and trends of brominated flame retardants in the Arctic. Chemosphere 64:209–233.CrossRefGoogle Scholar
  23. Dubois M, Pfohl-Leszkowicz A, Grosse Y, Kremers P (1995) DNA adducts and P450 induction in human, rat and avian liver cells after exposure to polychlorobiphenyls. Mutat Res 345:181–190.CrossRefGoogle Scholar
  24. Ellis HI, Gabrielsen GW (2002) Energetics of free-ranging seabirds. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, Washington, DC, pp 359–407.Google Scholar
  25. Erikstad KE, Moum T, Bustnes JO, Reiertsen TK (2009) High levels of organochlorines have detrimental effects on the sex allocation strategies in arctic glaucous gulls. Funct Ecol.Google Scholar
  26. Fox GA, Jeffrey DA, Williams KS, Kennedy SW, Grasman KA (2007) Health of herring gulls (Larus argentatus) in relation to breeding location in the early 1990s. I. Biochemical measures. J Toxicol Environ Health A 70:1443–1470.CrossRefGoogle Scholar
  27. Gabrielsen GW (2007) Levels and effects of persistent organic pollutants in arctic animals. In: Orbaek JB, Kallenborn R, Tombre I, Hegseth EN, Falk-Petersen S, Hoel AH (eds) Arctic-alpine ecosystems and people in a changing environment. Springer-Verlag, Berlin, Germany, pp 377–412.CrossRefGoogle Scholar
  28. Gabrielsen GW, Skaare JU, Polder A, Bakken V (1995) Chlorinated hydrocarbons in glaucous gulls (Larus hyperboreus) in the southern part of Svalbard. Sci Total Environ 160/161:337–346.CrossRefGoogle Scholar
  29. Gabrielsen GW, Alsos IG, Brekke B (1997) Undersøkelse av jord, fisk og sjøfugl i området rundt avfallsfyllingen på Jan Mayen. Norsk Polarinstutts Rapportserie 104:31. [in Norwegian]Google Scholar
  30. Gaston AJ, Descamps S, Gilchrist HG (2009) Reproduction and survival of glaucous gulls breeding in an Arctic seabird colony. J Field Ornithol 80:135–145.CrossRefGoogle Scholar
  31. Grasman KA (2002) Assessing immunological function in toxicological studies of avian wildlife. Integr Comp Biol 42:34–42.CrossRefGoogle Scholar
  32. Hakk H, Letcher RJ (2003) Metabolism in the toxicokinetics and fate of brominated flame retardants – a review. Environ Int 29:801–828.CrossRefGoogle Scholar
  33. Haukås M, Berger U, Hop H, Gulliksen B, Gabrielsen GW (2007) Bioaccumulation of per- and polyfluorinated alkyl substances (PFAS) in selected species from the Barents Sea food web. Environ Pollut 148:360–371.CrossRefGoogle Scholar
  34. Henriksen EO, Gabrielsen GW, Skaare JU (1998a) Validation of the use of blood samples to assess tissue concentrations of organochlorines in glaucous gulls. Chemosphere 37:2627–2643.CrossRefGoogle Scholar
  35. Henriksen EO, Brunstrøm B, Skaare JU, Gabrielsen GW (1998b) Bioassay-derived TCDD equivalents and mono-ortho PCB concentrations in liver of glaucous gulls, Larus hyperboreus, from Svalbard. Organohalogen Comp 39:415–418.Google Scholar
  36. Henriksen EO, Gabrielsen GW, Skaare JU, Skjegstad N, Jenssen BM (1998c) Relationships between PCB levels, hepatic EROD activity and plasma retinol in glaucous gulls, Larus hyperboreus. Mar Environ Res 46:45–49.CrossRefGoogle Scholar
  37. Henriksen EO, Gabrielsen GW, Trudeau S, Wolkers J, Sagerup K, Skaare JU (2000) Organochlorines and possible biochemical effects in glaucous gulls (Larus hyperboreus) from Bjørnøya, the Barents Sea. Arch Environ Contam Toxicol 38:234–243.CrossRefGoogle Scholar
  38. Herzke D, Gabrielsen GW, Evenset A, Burkow IC (2003) Polychlorinated camphenes (toxaphenes), polybrominated diphenylethers and other halogenated organic pollutants in glaucous gull (Larus hyperboreus) from Svalbard and Bjørnøya (Bear Island). Environ Pollut 121:293–300.CrossRefGoogle Scholar
  39. Hop H, Borgå K, Gabrielsen GW, Kleivane L, Skaare JU (2002) Food web magnification of persistent organic pollutants in poikilotherms and homeotherms. Environ Sci Technol 36:2589–2597.CrossRefGoogle Scholar
  40. Hose JE, Guillette LJ (1995) Defining the role of pollutants in the disruption of reproduction in wildlife. Environ Health Perspect 103:87–91.Google Scholar
  41. Ims RA, Fuglei E (2005) Trophic interaction cycles in tundra ecosystems and the impact of climate change. BioScience 55:311–322.CrossRefGoogle Scholar
  42. Jæger I, Hop H, Gabrielsen GW (2009) Biomagnification of mercury in selected species from an Arctic marine food web in Svalbard. Sci Total Environ 407:4744–4751.CrossRefGoogle Scholar
  43. Jenssen BM (2006) Endocrine-disrupting chemicals and climate change: a worst-case combination for Arctic marine mammals and seabirds? Environ Health Perspect 114:76–80.CrossRefGoogle Scholar
  44. Knudsen LB, Gabrielsen GW, Verreault J, Barrett R, Skåre JU, Polder A, Lie E (2005) Temporal trends of brominated flame retardants, cyclododeca-1,5,9-triene and mercury in eggs in four seabird species from Northern Norway and Svalbard. Report no. SFT 942/2005. Norwegian Pollution Control Authority (SFT), Oslo, Norway, 44 pp.Google Scholar
  45. Knudsen LB, Polder A, Føreid S, Lie E, Gabrielsen GW, Barrett R, Skåre JU (2006) Nona- and deca-brominated diphenylethers in seabird eggs from Northern Norway and Svalbard. Report no. SFT 952/2006. Norwegian Pollution Control Authority (SFT), Oslo, Norway, 30 pp.Google Scholar
  46. Knudsen LB, Sagerup K, Polder A, Schlabach M, Josefsen TD, Strøm H, Skåre JU, Gabrielsen GW (2007) Halogenated organic contaminants (HOCs) and mercury in dead or dying seabirds on Bjørnøya (Svalbard). Report no. SFT 977/2007. Norwegian Pollution Control Authority (SFT), Oslo, Norway, 45 pp.Google Scholar
  47. Krøkje A, Bingham C, Tuven RH, Gabrielsen GW (2006) Chromosome aberrations and DNA strand breaks in glaucous gull (Larus hyperboreus) chicks fed environmentally contaminated gull eggs. J Toxicol Environ Health A 69:159–174.CrossRefGoogle Scholar
  48. Letcher RJ, Klasson-Wehler E, Bergman Å (2000) Methyl sulfone and hydroxylated metabolites of polychlorinated biphenyls. In: Paasivita J (ed) The handbook of environmental chemistry– new types of persistent halogenated compounds, vol. 3, Part K. Springer-Verlag, Heidelberg, Germany, pp 315–359.Google Scholar
  49. Letcher RJ, Bustnes JO, Dietz R, Jenssen BM, Jørgensen EH, Sonne C, Verreault J, Vijayan MM, Gabrielsen GW (2009) Exposure and effects assessment of persistent organohalogen contaminants in Arctic wildlife and fish. Sci Total Environ.Google Scholar
  50. McKinney MA, Peacock E, Letcher RJ (2009) Sea ice-associated diet change increases the levels of chlorinated and brominated contaminants in polar bears. Environ Sci Technol 43:4334–4339.CrossRefGoogle Scholar
  51. McNabb FMA (2005) Biomarkers for the assessment of avian thyroid disruption by chemical contaminants. Avian Poult Biol Rev 16:3–10.CrossRefGoogle Scholar
  52. Moriarty F, Bell AA, Hanson H (1986) Does p,p'-DDE thin eggshells Environ Pollut Series A-Ecolo biol 40:257–286.CrossRefGoogle Scholar
  53. Muir DC, Howard PH (2006) Are there other persistent organic pollutants? A challenge for environmental chemists. Environ Sci Technol 40:7157–7166.CrossRefGoogle Scholar
  54. Norheim G (1987) Levels and interactions of heavy metals in seabirds from Svalbard and the Antarctic. Environ Pollut 47:83–94.CrossRefGoogle Scholar
  55. Norheim G, Kjos-Hanssen B (1984) Persistent chlorinated hydrocarbons and mercury in birds caught off the west-coast of Spitsbergen. Environ Pollut Series A-Ecolo Biol 33:43–152.Google Scholar
  56. Østby L, Gabrielsen GW, Krøkje A (2005) Cytochrome P4501A induction and DNA adduct formation in glaucous gulls (Larus hyperboreus), fed with environmentally contaminated gull eggs. Ecotoxicol Environ Saf 62:363–375.CrossRefGoogle Scholar
  57. Peakall DB (1996) Disrupted patterns of behavior in natural populations as an index of ecotoxicity. Environ Health Perspect 104:331–335.Google Scholar
  58. Pusch K, Schlabach M, Prinzinger R, Gabrielsen GW (2005) Gull eggs – food of high organic pollutant content? J Environ Monit 7:635–639.CrossRefGoogle Scholar
  59. Rolland RM (2000) A review of chemically-induced alterations in thyroid and vitamin A status from field studies of wildlife and fish. J Wildlife Dis 36:615–635.Google Scholar
  60. Ross MS, Verreault J, Letcher RJ, Gabrielsen GW, Wong CS (2008) Chiral organochlorine contaminants in the blood and eggs of glaucous gulls (Larus hyperboreus) from the Norwegian Arctic. Environ Sci Technol 42:7181–7186.CrossRefGoogle Scholar
  61. Sagerup K, Henriksen EO, Skorping A, Skaare JU, Gabrielsen GW (2000) Intensity of parasitic nematodes increases with organochlorine levels in the glaucous gull. J Appl Ecol 37:532–539.CrossRefGoogle Scholar
  62. Sagerup K, Henriksen EO, Skaare JU, Gabrielsen GW (2002) Intraspecific variation in trophic feeding levels and organochlorine concentrations in glaucous gulls (Larus hyperboreus) from Bjørnøya, the Barents Sea. Ecotoxicol 11:119–125.CrossRefGoogle Scholar
  63. Sagerup K, Helgason LB, Polder A, Strøm H, Josefsen TD, Skaare JU, Gabrielsen GW (2009a) Persistent organic pollutants and mercury in dead and dying glaucous gulls (Larus hyperboreus) at Bjørnøya (Svalbard). Sci Total Environ.Google Scholar
  64. Sagerup K, Savinov V, Savinova T, Kuklin VV, Muir DCG, Gabrielsen GW (2009b) Persistent organic pollutants, heavy metals and parasites in the glaucous gull (Larus hyperboreus) on Spitsbergen. Environ Pollut 157:2282–2290.CrossRefGoogle Scholar
  65. Sagerup K, Larsen HJS, Skaare JU, Johansen GM, Gabrielsen GW (2009c) The toxic effects of multiple persistent organic pollutant exposures on the post-hatch immunity maturation of glaucous gulls. J Toxicol Environ Health A 72:870–883.CrossRefGoogle Scholar
  66. Sanderson T, van den Berg M (2003) Interactions of xenobiotics with the steroid hormone biosynthesis pathway. Pure Appl Chem 75:1957–1971.CrossRefGoogle Scholar
  67. Savinov VM, Gabrielsen GW, Savinova TN (2003) Cadmium, zinc, copper, arsenic, selenium and mercury in seabirds from the Barents Sea: levels, inter-specific and geographical differences. Sci Total Environ 306:133–158.CrossRefGoogle Scholar
  68. Savinova TN, Polder A, Gabrielsen GW, Skaare JU (1995) Chlorinated hydrocarbons in seabirds from the Barents Sea area. Sci Total Environ 160/161:497–504.CrossRefGoogle Scholar
  69. Strøm H (2007) Distribution of seabirds on Bjørnøya. In: Anker-Nilssen T, Barrett RT, Bustnes JO, Erikstad KE, Fauchald P, Lorentsen S-H, Steen H, Strøm H, Systad GH, Tveraa T (eds) SEAPOP studies in the Lofoten and Barents sea area in 2006. Report no. 249. Norwegian Institute for Nature Research (NINA), Tromsø, Norway, 63 pp.Google Scholar
  70. Sures B (2006) How parasitism and pollution affect the physiological homeostasis of aquatic hosts. J Helminthol 80:151–157.CrossRefGoogle Scholar
  71. Teuten EL, Xu L, Reddy CM (2005) Two abundant bioaccumulated halogenated compounds are natural products. Science 307:917–920.CrossRefGoogle Scholar
  72. Trivers RL, Willard DE (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science 179:90–92.CrossRefGoogle Scholar
  73. Ucán-Marín F, Arukwe A, Mortensen A, Gabrielsen GW, Fox GA, Letcher RJ (2009) Recombinant transthyretin purification and competitive binding with organohalogen compounds in two gull species (Larus argentatus and Larus hyperboreus). Toxicol Sci 107:440–450.CrossRefGoogle Scholar
  74. Vander Pol SS, Becker PR, Ellisor MB, Moors AJ, Pugh RS, Roseneau DG (2009) Monitoring organic contaminants in eggs of glaucous and glaucous-winged gulls (Larus hyperboreus and Larus glaucescens) from Alaska. Environ Pollut 157:755–762.CrossRefGoogle Scholar
  75. Verboven N, Verreault J, Letcher RJ, Gabrielsen GW, Evans E (2008) Maternally derived testosterone and 17b-estradiol in the eggs of Arctic-breeding glaucous gulls in relation to persistent organic pollutants. Comp Biochem Physiol C: Toxicol Pharmacol 148:143–151.CrossRefGoogle Scholar
  76. Verboven N, Verreault J, Letcher RJ, Gabrielsen GW, Evans NP (2009a) Adrenocortical function of Arctic-breeding glaucous gulls in relation to persistent organic pollutants. Gen Comp Endocrinol.Google Scholar
  77. Verboven N, Verreault J, Letcher RJ, Gabrielsen GW, Evans E (2009b) Nest temperature and parental behaviour of Arctic-breeding glaucous gulls exposed to persistent organic pollutants. Anim Behav 77:411–418.CrossRefGoogle Scholar
  78. Verboven N, Verreault J, Letcher RJ, Gabrielsen GW, Evans E (2009c) Differential investment in eggs by Arctic-breeding glaucous gulls (Larus hyperboreus) exposed to persistent organic pollutants. Auk 126:123–133.CrossRefGoogle Scholar
  79. Verreault J, Skaare JU, Jenssen BM, Gabrielsen GW (2004) Effects of organochlorine contaminants on thyroid hormone levels in Arctic breeding glaucous gulls, Larus hyperboreus. Environ Health Perspect 112:532–537.CrossRefGoogle Scholar
  80. Verreault J, Letcher RJ, Muir DCG, Chu S, Gebbink WA, Gabrielsen GW (2005a) New organochlorine contaminants and metabolites in plasma and eggs of glaucous gulls (Larus hyperboreus) from the Norwegian Arctic. Environ Toxicol Chem 24:2486–2499.CrossRefGoogle Scholar
  81. Verreault J, Gabrielsen GW, Chu S, Muir DCG, Andersen M, Hamaed A, Letcher RJ (2005b) Flame retardants and methoxylated and hydroxylated polybrominated diphenyl ethers in two Norwegian Arctic top predators: Glaucous gulls and polar bears. Environ Sci Technol 39:6021–6028.CrossRefGoogle Scholar
  82. Verreault J, Houde M, Gabrielsen GW, Berger U, Haukås M, Letcher RJ, Muir DCG (2005c) Perfluorinated alkyl substances in plasma, liver, brain and eggs of glaucous gulls (Larus hyperboreus) from the Norwegian Arctic. Environ Sci Technol 39:7439–7445.CrossRefGoogle Scholar
  83. Verreault J, Agudo Villa R, Gabrielsen GW, Skaare JU, Letcher RJ (2006a) Maternal transfer of organohalogen contaminants and metabolites to eggs of Arctic-breeding glaucous gulls. Environ Pollut 144:1053–1060.CrossRefGoogle Scholar
  84. Verreault J, Letcher RJ, Ropstad E, Dahl E, Gabrielsen GW (2006b) Organohalogen contaminants and reproductive hormones in incubating glaucous gulls (Larus hyperboreus) from the Norwegian Arctic. Environ Toxicol Chem 25:2990–2996.CrossRefGoogle Scholar
  85. Verreault J, Gebbink WA, Gauthier LT, Gabrielsen GW, Letcher RJ (2007a) Brominated flame retardants in glaucous gulls from the Norwegian Arctic: more than just an issue of polybrominated diphenyl ethers. Environ Sci Technol 41:4925–4931.CrossRefGoogle Scholar
  86. Verreault J, Shahmiri S, Gabrielsen GW, Letcher RJ (2007b) Organohalogen and metabolically-derived contaminants and associations with whole body constituents in Norwegian Arctic glaucous gulls. Environ Int 33:823–830.CrossRefGoogle Scholar
  87. Verreault J, Bech C, Letcher RJ, Ropstad E, Dahl E, Gabrielsen GW (2007c) Organohalogen contamination in breeding glaucous gulls from the Norwegian Arctic: Associations with basal metabolism and circulating thyroid hormones. Environ Pollut 145:138–145.CrossRefGoogle Scholar
  88. Verreault J, Verboven N, Gabrielsen GW, Letcher RJ, Chastel O (2008) Changes in prolactin in a highly organohalogen-contaminated Arctic top predator seabird, the glaucous gull. Gen Comp Endocrinol 156:569–576.CrossRefGoogle Scholar
  89. Warner NA, Norstrom RJ, Wong CS, Fisk AT (2005) Enantiomeric fractions of chiral polychlorinated biphenyls provide insights on biotransformation capacity of arctic biota. Environ Toxicol Chem 24:2763–2767.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Département des sciences biologiquesUniversité du Québec à Montréal, Succursale Centre-villeMontréalCanada
  2. 2.National Wildlife Research CentreCarleton UniversityOttawaCanada
  3. 3.Norwegian Polar Institute, Polar Environmental CentreTromsøNorway
  4. 4.Norwegian Institute for Nature ResearchPolar Environmental CentreTromsøNorway

Personalised recommendations