Gammarus spp. in Aquatic Ecotoxicology and Water Quality Assessment: Toward Integrated Multilevel Tests

Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 205)


More than 4500 species belong to the crustacean sub-order Gammaridea (order Amphipoda) (Bousfield Among Amphipods, the Gammaridea are the most widespread group and are found throughout a range of marine, freshwater, and terrestrial habitats (Bousfield Lincoln, whereas the three other amphipod sub-orders (Hyperiidea, Ingolfiellidea, and Caprellidea) are highly specialized and ecologically restricted. Gammarus is the amphipod genus with the highest number of epigean freshwater species, comprising over 100 species that are distributed throughout the Northern Hemisphere (Karaman and Pinkster Abiotic factors such as temperature, salinity, oxygen, acidity, and pollution play an important role in the distribution of Gammarus species (Whitehurst and Lindsey and members of this species are often found in great abundance under rocks, in gravel, or in coarse substrates and among living and dead vegetation (Fitter and Manuel). These substrata provide both shelter from predators and a supply of organic detritus and other foodstuffs, with the result that in many riverine communities, amphipod species such as Gammarus pulex (Linnaeus) may represent the dominant macroinvertebrate in terms of biomass (Macneil et al. Shaw.


Linear Alkylbenzene Sulfonate Feeding Activity Endocrine Disruption Antipredator Behavior Brood Pouch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Dave Whitacre for valuable and constructive comments and suggestions on the manuscript.


  1. Abel PD (1980) Toxicity of γ-hexachlorocyclohexane (Lindane) to Gammarus pulex: Mortality in relation to concentration and duration of exposure. Freshwater Biol 10: 251–259.CrossRefGoogle Scholar
  2. Åbjörnsson L, Hansson A, Brönmark C (2004) Responses of prey from habitats with different predator regimes: Local adaptation and heritability. Ecology 85:1859–1866.CrossRefGoogle Scholar
  3. Adema DMM, Vink GJ (1981) A comparative study of the toxicity of 1,1,2-trichloroethane, dieldrin, pentachlorophenol and 3,4-dichloroaniline for marine and fresh water organisms. Chemosphere 10:533–554.CrossRefGoogle Scholar
  4. Allan J, Malmqvist B (1989) Diel activity of Gammarus pulex (Crustacea) in a South Swedish stream: Comparison of drift catches vs baited traps. Hydrobiologia 179:73–80.CrossRefGoogle Scholar
  5. Alonso A, Camargo JA (2004) Toxic effects of unionized ammonia on survival and feeding activity of the freshwater amphipod Eulimnogammarus toletanus (Gammaridae, Crustacea). Bull Environ Contam Toxicol 72:1052–1058.CrossRefGoogle Scholar
  6. Anderson NH, Cummins KW (1979) Influences of diet on the life histories of aquatic insects. J Fish Res Board Can 36:335–342.CrossRefGoogle Scholar
  7. Andersson K, Brönmark C, Herrmann J, Malmqvist B, Otto C, Sjörström P (1986) Presence of sculpins (Cottus gobio) reduces drift and activity of Gammarus pulex (Amphipoda). Hydrobiologia 133:209–215.CrossRefGoogle Scholar
  8. Arsuffi TL, Suberkropp K (1989) Selective feeding by shredders on leaf-colonising stream fungi: comparison of macroinvertebrate taxa. Oecologia 79:30–37.CrossRefGoogle Scholar
  9. Arthur JW, Leonard EN (1970) Effects of copper on Gammarus pseudolimnaeus, Physa integra and Campeloma decisum in soft water. J Fish Res Board Can 27:1277–1283.CrossRefGoogle Scholar
  10. Arts MJSJ, Schill RO, Knigge T, Eckwert H, Kammenga JE, Koehler HR (2004) Stress proteins (hsp70, hsp60) induced in isopods and nematodes by field exposure to metals in a gradient near Avonmouth, UK. Ecotoxicol 13:739–755.CrossRefGoogle Scholar
  11. Ashauer R, Boxall A, Brown C (2006) Predicting effects on aquatic organisms from fluctuating or pulsed exposure to pesticides. Environ Tox Chem 25:1899–1912.CrossRefGoogle Scholar
  12. Ashauer R, Boxall ABA, Brown CD (2007a) Modeling combined effects of pulsed exposure to carbaryl and chlorpyrifos on Gammarus pulex. Environ Sci Tech 41:5535–5541.CrossRefGoogle Scholar
  13. Ashauer R, Boxall ABA, Brown CD (2007b) Simulating toxicity of carbaryl to Gammarus pulex after sequential pulsed exposure. Environ Sci and Tech 41:5528–5534.CrossRefGoogle Scholar
  14. ASTM (1993) Standard guide for conducting sediment toxicity tests with freshwater invertebrates. In: Annual book of ASTM Standards, water and environmental technology, 11.04, ASTM, Philadelphia, E1383–E1393.Google Scholar
  15. Atchison GJ, Henry MG, Sandheinrich MB (1987) Effects of metals on fish behavior: A review. Environ Biol Fish 18:11–25.CrossRefGoogle Scholar
  16. Baird DJ, Brown SS, Lagadic L, Liess M, Maltby L, Moreira-Santos M, Schulz R, Scott GI (2007) In situ-based effect measures: Determining the ecological relevance of measured responses. Integr Environ Assess Man 3:259–267.CrossRefGoogle Scholar
  17. Bakker TCM, Mazzi D, Zala S (1997) Parasite-induced changes in behavior and color make Gammarus pulex more prone to fish predation. Ecology 78:1098–1104.Google Scholar
  18. Baldaia L, Porcheron P, Coimbra J, Cassier P (1984) Ecdysteroids in the shrimp Palaemon serratus: Relations with molt cycle. Gen Comp Endocriol 55:437–443.CrossRefGoogle Scholar
  19. Baldauf SA, Thünken T, Frommen JG, Bakker TCM, Heupel O, Kullmann H (2007) Infection with an acanthocephalan manipulates an amphipod’s reaction to a fish predator’s odours. Int J Parasitol 37:61–65.CrossRefGoogle Scholar
  20. Barlocher F, Kendrick K (1975) Assimilation efficiency of Gammarus pseudolimnaeus feeding on fungal mycelium or autumn shed leaves. Oikos 26:55–59.CrossRefGoogle Scholar
  21. Baumgärtner D, Jungbluth AD, Koch U, Von Elert E (2002) Effects of infochemicals on microhabitat choice by the freshwater amphipod Gammarus roeseli. Arch Hydrobiol 155:353–367.Google Scholar
  22. Bayne BL, Moore MN, Widdows J, Livingstone DR, Salkeld PN (1979) Measurement of the responses of individuals to environmental stress and pollution: Studies with bivalve molluscs. Philos Trans R Soc Lond 286B: 563–581.CrossRefGoogle Scholar
  23. Beitinger TL (1990) Behavioral reactions for the assessment of stress in fishes. J Great Lakes Res 16:495–528.CrossRefGoogle Scholar
  24. Beketov M, Liess M (2008) Potential of 11 pesticides to initiate downstream drift of stream macroinvertebrates. Arch Environ Contam Toxicol 55:247–253.CrossRefGoogle Scholar
  25. Bermingham S, Dewey FM, Maltby L (1995) Development of a monoclonal antibody-based immunoassay for the detection and quantification of Anguillospora longissima colonizing leaf material. Appl Environ Microbiol 61:2606–2613.Google Scholar
  26. Blockwell SJ, Taylor EJ, Jones I, Pascoe D (1998) The influence of fresh water pollutants and interaction with Asellus aquaticus (L.) on the feeding activity of Gammarus pulex (L.). Arch Environ Contam Toxicol 34:41–47.CrossRefGoogle Scholar
  27. Bloor M (2009) Aquatic pollution: Case study of landfill leachate toxicity and remediation. VDM Verlag, Germany pp. 1–176. ISBN 978-3-639-14699–8.Google Scholar
  28. Bloor MC, Banks CJ (2006) An evaluation of mixed species in-situ and ex-situ feeding assays: The altered response of Asellus aquaticus and Gammarus pulex. Environ Int 32:22–27.CrossRefGoogle Scholar
  29. Bloor MC, Banks CJ, Krivtsov V (2005) Acute and sublethal toxicity tests to monitor the impact of leachate on an aquatic environment. Environ Int 31:269–273.CrossRefGoogle Scholar
  30. Bollache L, Cezilly F (2004) State-dependent pairing behaviour in male Gammarus pulex (L.) (Crustacea, Amphipoda): effects of time left to moult and prior pairing status. Behav Process 66:131–137.CrossRefGoogle Scholar
  31. Borowski B (1984) The use of the males’ gnathopods during precopulation in some gammaridean amphipods. Crustaceana 47:245–250.CrossRefGoogle Scholar
  32. Bousfield EL (1973) Shallow-water gammaridean Amphipoda of New England. Corell University Press, Ithaca, New York.Google Scholar
  33. Boxall ABA, Maltby L (1995) The characterization and toxicity of sediment contaminated with road runoff. Water Res 29:2043–2050.CrossRefGoogle Scholar
  34. Breneman DH, Pontasch KW (1994) Stream microcosm toxicity tests: Predicting the effects of fenvalerate on riffle insect communities. Environ Toxicol Chem 13:381–387.CrossRefGoogle Scholar
  35. Brown AF, Pascoe D (1989) Parasitism and host sensitivity to cadmium: An acanthocephalan infection of the freshwater amphipod Gammarus pulex. J Appl Ecol 26:473–487.CrossRefGoogle Scholar
  36. Brown VM (1968) The calculation of the acute toxicity of mixtures of poisons to rainbow trout. Water Res 2:723–733.CrossRefGoogle Scholar
  37. Brungs WA, Geckler JR, Gast M (1976) Acute and chronic toxicity of copper to the fathead minnow in a surface water of variable quality. Water Res 10:37–43.CrossRefGoogle Scholar
  38. Bundschuh M, Hahn T, Gessner MO, Schulz R (2009) Antibiotics as a chemical stressor affecting an aquatic decomposer-detritivore system. Environ Toxicol Chem 28:197–203.CrossRefGoogle Scholar
  39. Burton GA, Nelson MK, Ingersoll CG (1992) Freshwater benthic toxicity tests. In: Burton GA (ed) Sediment toxicity assessment. Lewis Publishers, Boca Raton, Florida, pp. 213–240.Google Scholar
  40. Call DJ, Brooke LT, Kent RJ (1987) Bromacil and diuron herbicides: toxicity, uptake, and elimination in freshwater fish. Arch Environ Contam Toxicol 16:607–613.CrossRefGoogle Scholar
  41. Camus L, Olsen GH (2008) Embryo aberrations in sea ice amphipod Gammarus wilkitzkii exposed to water soluble fraction of oil. Mar Environ Res 66:221–222.CrossRefGoogle Scholar
  42. Cardoso AM, Barros CMF, Ferrer Correia AJ, Cardoso JM, Cortez A, Carvalho F., Baldaia L (1997) Identification of vertebrate type steroid hormones in the shrimp Penaeus Japonicus by tandem mass spectrometry and sequential product ion scanning. J Am Soc Mass Spectrom 8:365–370.CrossRefGoogle Scholar
  43. Carr RS, Linden O (1984) Bioenergetic responses of Gammarus salinus and Mytilus edulis to oil and oil dispersants in a model ecosystem. Mar Ecol Progr Ser 19:285–291.CrossRefGoogle Scholar
  44. Cezilly F, Gregoire A, Bertin A (2000) Conflict between co-occurring manipulative parasites? An experimental study of the joint influence of two acanthocephalan parasites on the behaviour of Gammarus pulex. Parasitology 120:625–630.CrossRefGoogle Scholar
  45. Chang CF, Jeng SR (1995) Isolation and characterization of the female-specific protein (vitellogenin) in mature female hemolymph of the prawn Penaeus chinensis. Comp Biochem Physiol B 112:257–263.CrossRefGoogle Scholar
  46. Cold A, Forbes VE (2004) Consequences of a short pulse of pesticide exposure for survival and reproduction of Gammarus pulex. Aquat Toxicol 67:287–299.CrossRefGoogle Scholar
  47. Correia AD, Costa FO, Neuparth T, Diniz ME, Costa MH (2001) Sub-lethal effects of copper-spiked sediments on the marine amphipod Gammarus locusta: Evidence of hormesis? Ecotoxicol Environ Res 4:32–38.Google Scholar
  48. Correia AD, Lima G, Costa MH, Livingstone DR (2002) Studies on biomarkers of copper exposure and toxicity in the marine amphipod Gammarus locusta (Crustacea): I. Induction metallothionein and lipid peroxidation. Biomarkers 7:422–437.CrossRefGoogle Scholar
  49. Costa FO, Correia AD, Costa MH (1998) Acute marine sediment toxicity: A potential new test with the amphipod Gammarus locusta. Ecotoxicol Environ Saf 40:81–87.CrossRefGoogle Scholar
  50. Costa FO, Neuparth T, Correia AD, Helena Costa M (2005) Multi-level assessment of chronic toxicity of estuarine sediments with the amphipod Gammarus locusta: II. Organism and population-level endpoints. Mar Environ Res 60:93–110.CrossRefGoogle Scholar
  51. Crane M (1994) Population characteristics of Gammarus pulex (L.) from five English streams. Hydrobiologia 281:91–100.CrossRefGoogle Scholar
  52. Crane M, Delaney P, Watson S, Parker P, Walker C (1995) The effect of malathion 60 on Gammarus pulex (L.) below watercress beds. Environ Toxicol Chem 14:1181–1188.Google Scholar
  53. Crane M, Maltby L (1991) The lethal and sublethal responses of Gammarus pulex to stress: Sensitivity and sources of variation in an in situ bioassay. Environ Toxicol Chem 10:1331–1339.Google Scholar
  54. Crane M, Sildanchandra W, Kheir R, Callaghan A (2002) Relationship between biomarker activity and developmental endpoints in Chironomus riparius Meigen exposed to an organophosphate insecticide. Ecotoxicol Environ Saf 53:361–369.CrossRefGoogle Scholar
  55. Crossland NO (1988) A method for evaluating effects of toxic chemicals on the productivity of freshwater ecosystems. Ecotoxicol Environ Saf 16:279–292.CrossRefGoogle Scholar
  56. Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Ann Rev Ecol Syst 10:147–172.CrossRefGoogle Scholar
  57. Dangles O, Gessner MO, Guerold F, Chauvet E (2004) Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning. J Appl Ecol 41:365–378.CrossRefGoogle Scholar
  58. Dangles O, Guérold F (2001) II. Leaf litter processing and invertebrates linking shredders and leaf litter processing: Insights from an acidic stream study. Int Rev Hydrobiol 86:395–406.CrossRefGoogle Scholar
  59. Dangles OJ, Guérold FA (2000) Feeding activity of Gammarus fossarum (Crustacea: Amphipoda) in acidic and low mineralized streams. Verh Int Ver Limnol 27:1–4.Google Scholar
  60. De Coen WM, Janssen CR (2003) The missing biomarker link: Relationships between effects on the cellular energy allocation biomarker of toxicant-stressed Daphnia magna and corresponding population characteristics. Environ Toxicol Chem 22:1632–1641.Google Scholar
  61. De Lange HJ, Lürling M, Van den Borne B, Peeters ETHM (2005) Attraction of the amphipod Gammarus pulex to water-borne cues of food. Hydrobiologia 544:19–25.CrossRefGoogle Scholar
  62. De Lange HJ, Noordoven W, Murk AJ, Lürling M, Peeters ETHM (2006a) Behavioural responses of Gammarus pulex (Crustacea, Amphipoda) to low concentrations of pharmaceuticals. Aquat Toxicol 78:209–216.CrossRefGoogle Scholar
  63. De Lange HJ, Sperber V, Peeters ETHM (2006b) Avoidance of polycyclic aromatic hydrocarbon-contaminated sediments by the freshwater invertebrates Gammarus pulex and Asellus aquaticus. Environ Toxicol Chem 25:452–457.CrossRefGoogle Scholar
  64. De Waal M, Poortman J, Voogt PA (1982) Steroid receptors in invertebrates. A specific 17β-estradiol binding protein in a sea star. Mar Biol Lett 3:317–323.Google Scholar
  65. Dick JTA, Elwood RW (1996) Effects of natural variation in sex ratio and habitat structure on mate-guarding decisions in amphipods (Crustacea). Behav Process 133:985–996.Google Scholar
  66. Dos Santos Carvalho C, Selistre De Araujo HS, Fernandes MN (2004) Hepatic metallothionein in a teleost (Prochilodus scrofa) exposed to copper at pH 4.5 and pH 8.0. Comp Biochem Physiol B 137:225–234.Google Scholar
  67. Fairchild JF, La Point TW, Zajicek JL, Nelson MK, Dwyer FJ, Lovely PA (1992) Population-, community- and ecosystem-level responses of aquatic mesocosms to pulsed doses of a pyrethroid insecticide. Environ Toxicol Chem 11:115–129.CrossRefGoogle Scholar
  68. Fairs NJ, Quinlan PT, Goad LJ (1990) Changes in ovarian unconjugated and conjugated steroid titers during vitellogenesis in Penaeus monodon. Aquaculture 89:83–99.CrossRefGoogle Scholar
  69. Felten V, Charmantier G, Mons R, Geffard A, Rousselle P, Coquery M, Garric J, Geffard O (2008) Physiological and behavioural responses of Gammarus pulex (Crustacea: Amphipoda) exposed to cadmium. Aquat Toxicol 86:413–425.CrossRefGoogle Scholar
  70. Fielding NJ, MacNeil C, Dick JTA, Elwood RW, Riddell GE, Dunn AM (2003) Effects of the acanthocephalan parasite Echinorhynchus truttae on the feeding ecology of Gammarus pulex (Crustacea: Amphipoda). J Zool 261:321–325.CrossRefGoogle Scholar
  71. Fitter R, Manuel R (1994) Collins photo guide to lakes, rivers, streams and ponds. Harper Collins, London.Google Scholar
  72. Forbes A, Magnuson J (1981) Decomposition and microbial colonization of leaves in a stream modified by coal ash effluent. Hydrobiologia 76:263–267.CrossRefGoogle Scholar
  73. Ford AT, Fernandes TF, Robinson CD, Davies IM, Read PA (2006) Can industrial pollution cause intersexuality in the amphipod Echinogammarus marinus? Mar Pollut Bull 53: 100–106CrossRefGoogle Scholar
  74. Forget J, Livet S, Leboulenger F (2002) Partial purification and characterization of acetylcholinesterase (AChE) from the estuarine copepod Eurytemora affinis (Poppe). Comp Biochem Physiol C 132:85–92.Google Scholar
  75. Forrow DM, Maltby L (2000) Toward a mechanistic understanding of contaminant-induces changes in detritus processing in streams: direct and indirect effects on detritivore feeding. Environ Toxicol Chem 19:2100–2106.CrossRefGoogle Scholar
  76. Fossi MC (1998) Biomarkers as diagnostic and prognostic tools for wildlife risk assessment: Integrating endocrine-disrupting chemicals. Toxicol Ind Health 14:291–309.Google Scholar
  77. Friberg N, Andersen TH, Hansen HO, Iversen TM, Jacobsen D, Krojgaard L, Larsen SE (1994) The effect of brown trout (Salmo trutta L.) on stream invertebrate drift, with special reference to Gammarus pulex L. Hydrobiologia 294:105–110.CrossRefGoogle Scholar
  78. Fulton MH, Key PB (2001) Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ Toxicol Chem 20:37–45.CrossRefGoogle Scholar
  79. Gagné F, Blaise C (2002) Modulation of exoskeleton characteristics and elevation of vitellogenin by municipal contaminants in the brine shrimp Artemia franciscana. In: Aquatic toxicology workshop, Whistler, Canada.Google Scholar
  80. Gagné F, Blaise C, Pellerin J (2005) Altered exoskeleton composition and vitellogenesis in the crustacean Gammarus sp. collected at polluted sites in the Saguenay Fjord, Quebec, Canada. Environ Res 98:89–99.CrossRefGoogle Scholar
  81. Gagou ME, Kapsetaki M, Turberg A, Kafetzopoulos D (2002) Stage-specific expression of the chitin synthase DmeChSA and DMeChSB genes during the onset of drosophila metamorphosis. Insect Biochem Mol Biol 32:141–146.CrossRefGoogle Scholar
  82. Garcia-de la Parra LM, Bautista-Covarrubias JC, Rivera-de la Rosa N, Betancourt-Lozano M, Guilhermino L (2006) Effects of methamidophos on acetylcholinesterase activity, behavior, and feeding rate of the white shrimp (Litopenaeus vannamei). Ecotoxicol Environ Saf 65:372–380.CrossRefGoogle Scholar
  83. Gerhardt A (1995) Monitoring behavioural responses to metals in Gammarus pulex (L.) (Crustacea) with impedance conversion. Environ Sci Pollut Res 2:15–23.CrossRefGoogle Scholar
  84. Gerhardt A (1996) Behavioural early warning responses to polluted water – Performance of Gammarus pulex L. (Crustacea) and Hydropsyche angustipennis (Curtis) (Insecta) to a complex industrial effluent. Environ Sci Pollut Res 3:63–70.CrossRefGoogle Scholar
  85. Gerhardt A (1999) Recent trends in online biomonitoring for water quality control. In: Gerhardt A (ed) Biomonitoring of polluted water, vol. 9. Trans Tech Publications Ltd, Zürich, pp. 95–118.Google Scholar
  86. Gerhardt A (2007) Aquatic behavioral ecotoxicology – Prospects and limitations. Human Ecol Risk Assess 13:481–491.CrossRefGoogle Scholar
  87. Gerhardt A, Carlsson A, Ressemann C, Stich KP (1998) New online biomonitoring system for Gammarus pulex (L.) (Crustacea): In Situ test below a copper effluent in south Sweden. Environ Sci Technol 32:150–156.CrossRefGoogle Scholar
  88. Gerhardt A, Kienle C, Allan IJ, Greenwood R, Guigues N, Fouillac AM, Mills GA, Gonzalez C (2007) Biomonitoring with Gammarus pulex at the Meuse (NL), Aller (GER) and Rhine (F) rivers with the online Multispecies Freshwater Biomonitor(R). J Environ Monit 9:979–985.CrossRefGoogle Scholar
  89. Gerhardt A, Quindt K (2000) Waste water toxicity and bio-monitoring with Gammarus pulex (L.) und Gammarus tigrinus (Sexton) (Crustacea: Amphipoda). Wasser Boden 52:19–26.Google Scholar
  90. Gerhardt A, Svensson E, Clostermann M, Fridlund B (1994) Monitoring of behavioral patterns of aquatic organisms with an impedance conversion technique. Environ Int 20:209–219.CrossRefGoogle Scholar
  91. Gessner MO, Chauvet E (2002) A case for using litter breakdown to assess functional stream integrity. Ecolog Appl 12:498–510.CrossRefGoogle Scholar
  92. Girling AE, Pascoe D, Janssen CR, PeitherA, Wenzel A, Schäfer H, Neumeier B, Mitchell GC, Taylor EJ, Maund SJ, Lay JP, Jüttner I, Crossland NO, Stephenson RR, Persoone G (2000) Development of methods for evaluating toxicity to freshwater ecosystems. Ecotoxicol Environ Saf 45:148–176.CrossRefGoogle Scholar
  93. Gowland BTG, Moffat CF, Stagg RM, Houlihan DF, Davies IM (2002) Cypermethrin induces glutathione S-transferase activity in the shore crab, Carcinus maenas. Mar Environ Res 54:169–177.CrossRefGoogle Scholar
  94. Graça MAS, Maltby L, Calow P (1993) Importance of fungi in the diet of Gammarus pulex and Asellus aquaticus I: feeding strategies. Oecologia 93:139–144.Google Scholar
  95. Graça MAS, Maltby L, Calow P (1994) Comparative ecology of Gammarus pulex (L.) and Asellus aquaticus (L.) II: fungal preferences. Hydrobiologia 281:163–170.CrossRefGoogle Scholar
  96. Green DWJ, Williams KA, Pascoe D (1986) Studies on the acute toxicity of pollutants to freshwater macroinvertebrates. 4. Lindane (γ-hexachlorocyclohexane). Arch Hydrobiol 106:263–273.Google Scholar
  97. Gross-Sorokin MY, Grist EPM, Cooke M, Crane M (2003) Uptake and Depuration of 4-Nonylphenol by the Benthic Invertebrate Gammarus pulex: How Important Is Feeding Rate? Environ Sci Technol 37:2236–2241.CrossRefGoogle Scholar
  98. Gross MY, Maycock DS, Thorndyke MC, Morritt D, Crane M (2001) Abnormalities in sexual development of the amphipod Gammarus pulex (L.) found below sewage treatment works. Environ Toxicol Chem 20:1792–1797.Google Scholar
  99. Hans RK, Khan MA, Farooq M, Beg MU (1993) Glutathione-S-transferase activity in an earthworm (Pheretima posthuma) exposed to three insecticides. Soil Biol Biochem 25:509–511.CrossRefGoogle Scholar
  100. Hargeby A (1993) Asellus and Gammarus spp. (Crustacea) in changing environments: Effects of acid stress and habitat permanence. In Department of Ecology/Limnology, Ph.D. University of Lund, Lund, Sweden.Google Scholar
  101. Hartnoll RG, Smith M (1980) An experimental study of sex discrimination and pair formation in Gammarus duebeni. Crustaceana 38:253–264.CrossRefGoogle Scholar
  102. Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30:445–600.CrossRefGoogle Scholar
  103. Hill IR, Matthiessen P, Heimbach F (1993) Guidance document on sediment toxicity tests and bioassays for freshwater and marine environments. SETAC-Europe Workeshop on Sediment Toxicity Assessment (Renesse, NL, November 1993). SETAC-Europe, Brussels, Belgium. 105 pp.Google Scholar
  104. Holomuzki JR, Hoyle JD (1990) Effect of predatory fish presence on habitat use and diel movement of the stream amphipod, Gammarus minus. Freshwater Biol 24:509–517.CrossRefGoogle Scholar
  105. Hynes HBN (1955) The reproductive cycle of some British freshwater Gammaridae. J Anim Ecol 24:352–387.CrossRefGoogle Scholar
  106. Jungmann D, Ladewig V, Ludwichowski K-U, Petsch P, Nagel R (2004) Intersexuality in Gammarus fossarum (Koch) A common inducible phenomenon? Arch Hydrobiol 159:511–529.CrossRefGoogle Scholar
  107. Karaman G, Pinkster S (1977) Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea, Amphipoda). I. Gammarus pulex group and related species. Bijdr Dierk 47:1–97.Google Scholar
  108. Kaushik NK, Hynes HBN (1971) The fate of dead leaves that fall into streams. Arch Hydrobiol 68:465–515.Google Scholar
  109. Kinzler W, Kley A, Mayer G, Waloszek D, Maier G (2008) Mutual predation between and cannibalism within several freshwater gammarids: Dikerogammarus villosus versus one native and three invasives. Aquat Ecol 43:457–464.CrossRefGoogle Scholar
  110. Köhler HR, Zanger M, Eckwert H, Einfeldt I (2000) Selection favours low hsp70 levels in chronically metal-stressed soil arthropods. J Evol Biol 13:569–582.CrossRefGoogle Scholar
  111. Kosalwat P, Knight AW (1987) Acute toxicity of aqueous and substrate-bound copper to the midge, Chironomus decorus. Arch Environ Contam Toxicol 16:275–282.CrossRefGoogle Scholar
  112. Kregel KC (2002) Molecular biology of thermoregulation: Invited review: Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186.Google Scholar
  113. Ladewig V, Jungmann D, Köhler HR, Schirling M, Triebskorn R, Nagel R (2006) Population structure and dynamics of Gammarus fossarum (Amphipoda) upstream and downstream from effluents of sewage treatment plants. Arch Environ Contam Toxicol 50: 370–383.CrossRefGoogle Scholar
  114. Lauridsen RB, Friberg N (2005) Stream macroinvertebrate drift response to pulsed exposure of the synthetic pyrethroid lambda-cyhalothrin. Environ Toxicol 20:513–521.CrossRefGoogle Scholar
  115. Lawrence AJ, Poulter C (1998) Development of a sub-lethal pollution bioassay using the estuarine amphipod Gammarus duebeni. Water Res 32:569–578.CrossRefGoogle Scholar
  116. Lawrence AJ, Poulter C (2001) Impact of copper, pentachlorophenol and benzo[a]pyrene on the swimming efficiency and embryogenesis of the amphipod Chaetogammarus marinus. Mar Ecol Progress Ser 223:213–223.CrossRefGoogle Scholar
  117. Lecerf A, Dobson M, Dang C, Chauvet E (2005) Riparian plant species loss alters trophic dynamics in detritus-based stream ecosystems. Oecologia 146:432–442.CrossRefGoogle Scholar
  118. Li GC, Werb Z (1982) Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts. Proc Nat Acad Sci USA 79:3218–3222.CrossRefGoogle Scholar
  119. Lincoln RG (1979) British marine Amphipoda: Gammaridea. British Museum (Natural History), London, UK.Google Scholar
  120. Livingstone DR (2001) Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42:656–666.CrossRefGoogle Scholar
  121. Macedo-Sousa JA, Gerhardt A, Brett CMA, Nogueira AJA, Soares AMVM (2008) Behavioural responses of indigenous benthic invertebrates (Echinogammarus meridionalis, Hydropsyche pellucidula and Choroterpes picteti) to a pulse of Acid Mine Drainage: A laboratorial study. Environ Pollut 156:966–973.CrossRefGoogle Scholar
  122. Macek KJ, Buxton KS, Sauter S, Gnilka S, Dean JW (1976) Chronic toxicity of atrazine to selected aquatic invertebrates and fish. In: Ecol Res Ser. EPA-600/3-76-047. U.S. Environmental Protection Agency, Washington, DC.Google Scholar
  123. Macneil C, Dick JTA, Elwood RW (1997) The trophic ecology of freshwater Gammarus spp. (Crustacea: Amphipoda): Problems and perspectives concerning the functional feeding group concept. Biol Rev 72:349–364.CrossRefGoogle Scholar
  124. Maitland PS (1966) Notes on the biology of Gammarus pulex in the River Endrick. Hydrobiologia 28:142–152.CrossRefGoogle Scholar
  125. Malbouisson JFC, Young TWK, Bark AW (1995) Use of feeding rate and re-pairing of precopulatory Gammarus pulex to assess toxicity of gamma-hexachlorocyclohexane (lindane). Chemosphere 30:1573–1583.CrossRefGoogle Scholar
  126. Maltby L (1992) Heterotrophic microbes. In: Calow P, Petts GI (eds) The rivers handbook. Blackwell Scientific Publications, Oxford, pp 165–194.Google Scholar
  127. Maltby L, Clayton SA, Wood RM, McLoughlin N (2002) Evaluation of the Gammarus pulex in situ feeding assay as a biomonitor of water quality: robustness, responsiveness, and relevance. Environ Toxicol Chem 21:361–368.Google Scholar
  128. Maltby L, Clayton SA, Yu H, McLoughlin N, Wood RM, Yin D (2000) Using single-species toxicity tests, community-level responses, and toxicity identification evaluations to investigate effluent impacts. Environ Toxicol Chem 19:151–157.CrossRefGoogle Scholar
  129. Maltby L, Crane M (1994) Responses of Gammarus pulex (Amphipoda, Crustacea) to metalliferous effluents: Identification of toxic components and the importance of interpopulation variation. Environ Pollut 84:45–52.CrossRefGoogle Scholar
  130. Maltby L, Hills L (2008) Spray drift of pesticides and stream macroinvertebrates: Experimental evidence of impacts and effectiveness of mitigation measures. Environ Pollut 156: 1112–1120.CrossRefGoogle Scholar
  131. Maltby L, Naylor C (1990) Preliminary observations on the ecological relevance of the Gammarus “scope for growth” assay: effect of zinc on reproduction. Funct Ecol 4:393–397.CrossRefGoogle Scholar
  132. Maltby L, Naylor C, Calow P (1990) Field deployment of a scope for growth assay involving Gammarus pulex, a freshwater benthic invertebrate. Ecotoxicol Environ Saf 19:292–300.CrossRefGoogle Scholar
  133. Marchant R, Hynes HBN (1981) Field estimates of feeding rate for Gammarus pseudolimnaeus (Crustacea: Amphipoda) in the Credit river, Ontario. Freshwater Biol 11:27–36.CrossRefGoogle Scholar
  134. Maund SJ, Taylor EJ, Pascoe D (1992) Population responses of the freshwater amphipod crustacean Gammarus pulex (L.) to copper. Freshwater Biol 28:29–36.CrossRefGoogle Scholar
  135. McCahon CP, Maund SJ, Poulton MJ (1991) The effect of the acanthocephalan parasite (Pomphorhynchus laevis) on the drift of its intermediate host (Gammarus pulex). Freshwater Biol 25:507–513.CrossRefGoogle Scholar
  136. McCahon CP, Pascoe D (1988a) Culture techniques for three freshwater macroinvertebrate species and their use in toxicity tests. Chemosphere 17:2471–2480.CrossRefGoogle Scholar
  137. McCahon CP, Pascoe D (1988b) Use of Gammarus pulex (L.) in safety evaluation tests: Culture and selection of a sensitive life stage. Ecotoxicol Environ Saf 15:245–252.CrossRefGoogle Scholar
  138. McIntosh AR, Peckarsky BL, Taylor BW (1999) Rapid size-specific changes in the drift of Baetis bicaudatus (Ephemeroptera) caused by alterations in fish odour concentration. Oecologia 118:256–264.CrossRefGoogle Scholar
  139. McLoughlin N, Yin D, Maltby L, Wood RM, Yu H (2000) Evaluation of sensitivity and specificity of two crustacean biochemical biomarkers. Environm Toxicol Chem 19:2085–2092.CrossRefGoogle Scholar
  140. McWilliam RA, Baird DJ (2002a) Application of postexposure feeding depression bioassays with Daphnia magna for assessment of toxic effluents in rivers. Environ Toxicol Chem 21:1462–1468.Google Scholar
  141. McWilliam RA, Baird D J (2002b) Postexposure feeding depression: A new toxicity endpoint for use in laboratory studies with Daphnia magna. Environ Toxicol Chem 21:1198–1205.Google Scholar
  142. Mian LS, Mulla MS (1992) Effects of pyrethroid insecticides on nontarget invertebrates in aquatic ecosystems. J Agric Entomol 9:73–98.Google Scholar
  143. Moore JW (1975) The role of algae in the diet of Asellus aquaticus L. and Gammarus pulex L. J Anim Ecol 44:719–730.CrossRefGoogle Scholar
  144. Mori K (1967) Histochemical study on the localization and physiological significance of glucose-6-phosphate dehydrogenase system in the oyster during the stage of sexual maturation and spawning. Tohoku J Agric Res 17:287–295.Google Scholar
  145. Morritt D, Spicer JI (1996) The culture of eggs and embryos of amphipod crustaceans: Implications for brood pouch physiology. J Mar Biol Assoc UK 76:361–376.CrossRefGoogle Scholar
  146. Munawar M, Norwood WP, McCarthy LH, Mayfield CI (1989) In situ bioassessment of dredging and disposal activities in a contaminated ecosystem: Toronto Harbour. Hydrobiologia 188–189:601–618.CrossRefGoogle Scholar
  147. Musko IB, Meinel W, Krause R, Barlas M (1990) The impact of Cd and different pH on the amphipod Gammarus fossarum Koch (Crustacea: Amphipoda). Comp Biochem Physiol C 96:11–16.CrossRefGoogle Scholar
  148. Nadeau D, Corneau S, Plante I, Morrow G, Tanguay RM (2001) Evaluation for Hsp70 as a biomarker of effect of pollutants on the earthworm Lumbricus terrestris. Cell Stress Chap 6: 153–163.CrossRefGoogle Scholar
  149. Nakagawa Y, Nishimura K, Oikawa N, Kurihara N, Ueno T (1995) Activity of ecdysone analogs in enhancing N-acetylglucosamine incorporation into the cultured integument of Chilo suppressalis. Steroids 60:401–405.CrossRefGoogle Scholar
  150. Nation L (2002) Integument. In: Insect Physiology and Biochemistry. CRC Press, London, pp 89–115.Google Scholar
  151. Naylor C, Maltby L, Calow P (1989) Scope for growth in Gammarus pulex, a freshwater benthic detritivore. Hydrobiologia 188–189:517–523.CrossRefGoogle Scholar
  152. Neuparth T, Correia AD, Costa FO, Lima G, Costa MH (2005) Multi-level assessment of chronic toxicity of estuarine sediments with the amphipod Gammarus locusta: I. Biochemical endpoints. Mar Environ Res 60:69–91.CrossRefGoogle Scholar
  153. Nilsson LM (1974) Energy budget of a laboratory population of Gammarus pulex (Amphipoda). Oikos 25:35–42.CrossRefGoogle Scholar
  154. Niyogi DK, Lewis WM, McKnight DM (2001) Litter breakdown in mountain streams affected by mine drainage: biotic mediation of abiotic controls. Ecolog Appl 11:506–516.CrossRefGoogle Scholar
  155. Oberdörster E, Rice CD, Irwin LK (2000) Purification of vitellin from grass shrimp Palaemonetes pugio, generation of monoclonal antibodies, and validation for the detection of lipovitellin in Crustacea. Comp Biochem Physiol C 127:199–207.Google Scholar
  156. Olsen GH, Carroll J, Sva E, Camus L (2008) Cellular energy allocation in the Arctic sea ice amphipod Gammarus wilkitzkii exposed to the water soluble fractions of oil. Mar Environ Res 66:213–214.CrossRefGoogle Scholar
  157. Pantani C, Pannunzio G, De Cristofaro M, Novelli A A, Salvatori M (1997) Comparative acute toxicity of some pesticides, metals, and surfactants to Gammarus italicus Goedm. and Echinogammarus tibaldii Pink. and Stock (Crustacea: Amphipoda). Bull Environ Contam Toxicol 59:963–967.CrossRefGoogle Scholar
  158. Pascoe D, Kedwards TJ, Blockwell SJ, Taylor EJ (1995) Gammarus pulex (L.) feeding bioassay – Effects of parasitism. Bull Environ Contam Toxicol 55:629–632.CrossRefGoogle Scholar
  159. Pereira AMM, Soares AMVM, Goncalves F, Ribeiro R (2000) Water-column, sediment, and in situ chronic bioassays with cladocerans. Ecotoxicol Environ Saf 47:27–38.CrossRefGoogle Scholar
  160. Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18:306–360.CrossRefGoogle Scholar
  161. Ridley M (1983) The explanation of organic diversity. The comparative method and adaptations for mating. Oxford University Press, New York.Google Scholar
  162. Rossi L (1985) Interactions between invertebrates and microfungi in freshwater ecosystems. Oikos 44:175–184.CrossRefGoogle Scholar
  163. Scheil V, Triebskorn R, Köhler HR (2008) Cellular and stress protein responses to the UV Filter 3-benzylidene camphor in the amphipod crustacean Gammarus fossarum (Koch 1835). Arch Environ Contam Toxicol 54:684–689.CrossRefGoogle Scholar
  164. Scherer E (1992) Behavioral responses as indicators of environmental alterations: approaches, results, developments. J Appl Ichthyol 8:122–131.CrossRefGoogle Scholar
  165. Schill RO, Görlitz H, Köhler HR (2003) Laboratory simulation of a mining accident: acute toxicity, hsc/hsp70 response, and recovery from stress in Gammarus fossarum (Crustacea, Amphipoda) exposed to a pulse of cadmium. BioMetals 16:391–401.CrossRefGoogle Scholar
  166. Schirling M, Jungmann D, Ladewig V, Ludwichowski KU, Nagel R, Köhler HR, Triebskorn R (2006) Bisphenol A in artificial indoor streams: II. Stress response and gonad histology in Gammarus fossarum (Amphipoda). Ecotoxicol 15:143–156.CrossRefGoogle Scholar
  167. Schirling M, Jungmann D, Ladewig V, Nagel R, Triebskorn R, Köhler HR (2005) Endocrine effects in Gammarus fossarum (Amphipoda): Influence of wastewater effluents, temporal variability, and spatial aspects on natural populations. Arch Environ Contam Toxicol 49:53–61.CrossRefGoogle Scholar
  168. Schirling M, Triebskorn R, Köhler HR (2004) Variation in stress protein levels (hsp70 and hsp90) in relation to oocyte development in Gammarus fossarum (Koch 1835). Invert Reprod Deve 45:161–167.CrossRefGoogle Scholar
  169. Schlenk D, Colley WC, El-AlfyA, Kirby R, Griffin BR (2000) Effects of the oxidant potassium permanganate on the expression of gill metallothionein mRNA and its relationship to sublethal whole animal endpoints in channel catfish. Toxicol Sci 54:177–182.CrossRefGoogle Scholar
  170. Schmidt J (2003) Wirkung von Umweltchemikalien auf Gammarus fossarum – Populations-experimente und individuenbasiertes Reproduktionsmodell. In: Fakultät Forst-, Geo- und Hydrowissenschaften. Institut für Hydrobiologie. PhD Thesis. Technische Universität Dresden, Dresden.Google Scholar
  171. Segner H, Caroll K, Fenske M, Janssen CR, Maack G, Pascoe D, Schäfers C, Vandenbergh GF, Watts M, Wenzel A (2003) Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project. Ecotoxicol Environ Saf 54:302–314.CrossRefGoogle Scholar
  172. Shaw G (1979) Prey selection by breeding dippers. Bird Study 26:66–67.CrossRefGoogle Scholar
  173. Sibley PK, Kaushik NK, Kreutzweiser DP (1991) Impact of a pulse application of permethrin on the macroinvertebrate community of a headwater stream. Environ Pollut 70:35–55.CrossRefGoogle Scholar
  174. Sih A (1992) Prey uncertainty and the balancing of antipredator and feeding needs. Am Nat 139:1052–1069.CrossRefGoogle Scholar
  175. Smyly WJP (1957) The life-history of the Bullhead or Miller’s Thumb (Cottus gobio L.). Proc Zool Soc Lond 128:431–453.Google Scholar
  176. Streit B, Kuhn K (1994) Effects of organophosphorous insecticides on autochthonous and introduced Gammarus species. Water Sci Technol 29:233–240.Google Scholar
  177. Subramoniam T (2000) Crustacean ecdysteroids in reproduction and embryogenesis. Comp Biochem Physiol C 125:135–156.Google Scholar
  178. Subramoniam T, Tirumalai R, Gunamalai V, Hoffmann KH (1999). Embryonic ecdysteroids in a mole crab, Emerita asiatica (Milne-Edwards). J Biosci 24:91–96.CrossRefGoogle Scholar
  179. Sunny F, Lakshmy PS, Oommen OV (2002) Rapid action of cortisol and testosterone on lipogenic enzymes in a fresh water fish Oreochromis mossambicus: Short-term in vivo and in vitro study. Comp Biochem Physiol B 131:297–304.CrossRefGoogle Scholar
  180. Sutcliffe DW (1993) Reproduction in Gammarus (Crustacea: Amphipoda): male strategies. Freshwat Forum 3:97–109.Google Scholar
  181. Sutcliffe DW, Carrick TR, Willoughby LG (1981) Effects of diet, body size, age and temperature on growth rates in the amphipod Gammarus pulex. Freshwater Biol 11:183–214.CrossRefGoogle Scholar
  182. Sutcliffe DW, Hildrew AG (1989) Invertebrate communities in acid streams. Cambridge University Press, Cambridge.Google Scholar
  183. Taylor EJ, Jones DPW, Maund SJ, Pascoe D (1993) A new method for measuring the feeding activity of Gammarus pulex (L.). Chemosphere 26:1375–1381.CrossRefGoogle Scholar
  184. Taylor EJ, Maund SJ, Pascoe D (1991) Toxicity of four common pollutants to the freshwater macroinvertebrates Chironomus riparius Meigen (Insecta: Diptera) and Gammarus pulex (L.) (Crustacea: Amphipoda). Arch Environ Contam Toxicol 21:371–376.CrossRefGoogle Scholar
  185. Thomas F, Renaud F, Derothe JM, Lambert A, Meeüs T, Cézilly F (1995) Assortative pairing in Gammarus insensibilis (Amphipoda) infected by a trematode parasite. Oecologia 104:259–264.CrossRefGoogle Scholar
  186. Thornton JW, Need E, Crews D (2003) Resurrecting the ancestral steroid receptor: Ancient origin of estrogen signaling. Science 301:1714–1717.CrossRefGoogle Scholar
  187. Triebskorn R, Adam S, Casper H, Honnen W, Pawert M, Schramm M, Schwaiger J, Köhler HR (2002) Biomarkers as diagnostic tools for evaluating effects of unknown past water quality conditions on stream organisms. Ecotoxicol 11:451–465.CrossRefGoogle Scholar
  188. Van Wijngaarden RPA, Cuppen, JGM, Arts, GHP, Crum SJH, Van den Hoorn MW, Van den Brink PJ, Brock TCM (2004) Aquatic risk assessment of a realistic exposure to pesticides used in bulb crops: A microcosm study. Environ Toxicol Chem 23:479–1498.Google Scholar
  189. Varo I, Navarro JC, Amat F, Guilhermino L (2002) Characterisation of cholinesterases and evaluation of the inhibitory potential of chlorpyrifos and dichlorvos to Artemia salina and Artemia parthenogenetica. Chemosphere 48:563–569CrossRefGoogle Scholar
  190. Veerasingham M, Crane M (1992) Impact of farm waste on freshwater invertebrate abundance and the feeding rate of Gammarus pulex L. Chemosphere 25:869–874.CrossRefGoogle Scholar
  191. Viarengo A, Burlando B, Ceratto N, Panfoli I (2000) Antioxidant role of metallothioneins: a comparative overview. Cell Mol Biol 46:407–417.Google Scholar
  192. Vigh DA, Dendinger, JE (1982) Temporal relationships of postmolt deposition of calcium, magnesium, chitin and protein in the cuticle of the Atlantic blue crab, Callinectes sapidus Rathbun. Comp Biochem Physiol A 72:365–369.CrossRefGoogle Scholar
  193. Watts MM, Pascoe D, Carroll K (2001) Survival and precopulatory behaviour of Gammarus pulex (L.) exposed to two xenoestrogens. Water Res 35:2347–2352.CrossRefGoogle Scholar
  194. Watts MM, Pascoe D, Carroll K (2002) Population responses of the freshwater amphipod Gammarus pulex (L.) to an environmental estrogen, 17α-ethinylestradiol. Environ Toxicol Chem 21:445–450.Google Scholar
  195. Watts MM, Pascoe D, Carroll K (2003) Exposure to 17[alpha]-ethinylestradiol and bisphenol A–effects on larval moulting and mouthpart structure of Chironomus riparius. Ecotoxicol Environ Saf 54:207–215.CrossRefGoogle Scholar
  196. Webster JR, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Ann Rev Ecol System 17:567–594.CrossRefGoogle Scholar
  197. Welton JS (1979) Life-history and production of the amphipod Gammarus pulex in a Dorset chalk stream. Freshwater Biol 9:263–275.CrossRefGoogle Scholar
  198. Welton JS, Clarke RT (1980) Laboratory studies on the reproduction and growth of the amphipod, Gammarus pulex (L.). J Anim Ecol 49:581–592.CrossRefGoogle Scholar
  199. Welton JS, Mill CA, Rendle EL (1983) Food and habitat partitioning in two small benthic fishes, Noemacheilus barbatulus (L.) and Cottus gobio (L.). Arch Hydrobiol 97:434–454.Google Scholar
  200. Werner I, Auel H, Friedrich C (2002) Carnivorous feeding and respiration of the Arctic under-ice amphipod Gammarus wilkitzkii. Polar Biol 25:523–530.CrossRefGoogle Scholar
  201. Whitehurst IT, Lindsey BI (1990) The impact of organic enrichment on the benthic macroinvertebrate communities of a lowland river. Water Res 25:625–630.CrossRefGoogle Scholar
  202. WHO (1986). Organophosphorus insecticides: A general introduction. Environ Health Crit 63. World Health Organization, Geneva.Google Scholar
  203. Williams DD, Moore KA (1985) The role of semiochemicals in benthic community relationships of the lotic amphipod Gammarus pseudolimnaeus: a laboratory analysis. Oikos 44:280–286.CrossRefGoogle Scholar
  204. Willoughby LG, Earnshaw R (1982) Gut passage times in Gammarus pulex (Crustacea: Amphipoda) and aspects of summer feeding in a stony stream. Hydrobiol 97:105–117.CrossRefGoogle Scholar
  205. Willoughby LG, Sutcliffe DW (1976) Experiments on feeding and growth of the amphipod Gammarus pulex (L.) related to its distribution in the River Duddon. Freshwater Biol 6:577–586.CrossRefGoogle Scholar
  206. Winner RW, Farrell M (1976) Acute and chronic toxicity of copper to four species of Daphnia. J Fish Res Bd Can 33:1685–1691.CrossRefGoogle Scholar
  207. Wisenden BD, Cline A, Sparkes TC (1999) Survival benefit to antipredator behavior in the amphipod Gammarus minus (Crustacea: Amphipoda) in response to injury-released chemical cues from conspecifics and heterospecifics. Ethology 105:407–414.CrossRefGoogle Scholar
  208. Wisenden BD, Pohlman SG, Watkin EE (2001) Avoidance of conspecific injury-released chemical cues by free-ranging Gammarus lacustris (Crustacea: Amphipoda). J Chem Ecol 27:1249–1258.CrossRefGoogle Scholar
  209. Wogram J, Liess M (2001) Rank ordering of macroinvertebrate species sensitivity to toxic compounds by comparison with that of Daphnia magna. Bull Environ Contam Toxicol 67:360–367.Google Scholar
  210. Wudkevich K, Wisenden BD, Chivers DP, Smith, RJF (1997) Reactions of Gammarus lacustris to chemical stimuli from natural predators and injured conspecifics. J Chem Ecol 23:1163–1173.CrossRefGoogle Scholar
  211. Xuereb B, Noury P, Felten V, Garric J, Geffard O (2007) Cholinesterase activity in Gammarus pulex (Crustacea Amphipoda): Characterization and effects of chlorpyrifos. Toxicol 236:178–189.CrossRefGoogle Scholar
  212. Zielinski D (1998) Life cycle and altitude range of Gammarus leopoliensis Jazdzewski & Konopacka, 1989 (Amphipoda) in south-eastern Poland. Crustaceana 71:129–143.CrossRefGoogle Scholar
  213. Zou E, Fingerman M (1997) Synthetic estrogenic agents do not interfere with sex differentiation but do inhibit molting of the cladoceran Daphnia magna. Bull Environ Contam Toxicol 58:596–602.CrossRefGoogle Scholar
  214. Zou E, Fingerman M (1999) Effects of estrogenic agents on chitobiose activity in the epidermis and hepatopancreas of the fiddler crab, Uca pugilator. Ecotoxicol Environ Saf 42:185–190.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Ecotox Centre, Swiss Center for Applied Ecotoxicology, Eawag/EPFLDübendorfSwitzerland

Personalised recommendations