Skip to main content

Imaging Cross-Modal Influences in Auditory Cortex

  • Chapter
  • First Online:
  • 1023 Accesses

Abstract

Recent studies have made considerable progress in understanding how our brain combines the information from different sensory modalities and much evidence about the cortical regions involved has been provided by functional magnetic resonance imaging. Imaging studies have, for example, shown that cross-modal influences occur already at early stages of auditory cortex. However, given our still limited understanding of the functional organization of human auditory cortex, these results are often to interpret with respect to the exact localization of cross-modal influences. Here we discuss a localization technique, which provides a functional map of individual fields in the auditory cortex of individual subjects. Using high-resolution imaging techniques in an animal model with known organization of auditory cortex, we proved the feasibility of this functional mapping technique and demonstrated its use in localizing cross-modal influences to individual auditory fields. Our results show that cross-modal influences already occur in secondary auditory cortices and increase along the auditory processing hierarchy. While these results provide good evidence that auditory processing can be affected by non-acoustic stimuli very early on, we also discuss the interpretability of these findings with regard to the underlying neuronal activity, which is considerable hampered by the still unknown neural basis of the fMRI signal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14:257–262

    PubMed  CAS  Google Scholar 

  • Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25:621–625

    Article  PubMed  CAS  Google Scholar 

  • Bartels A, Logothetis NK, Moutoussis K (2008) fMRI and its interpretations: an illustration on directional selectivity in area V5/MT. Trends Neurosci 31:444–453

    Article  PubMed  CAS  Google Scholar 

  • Benevento LA, Fallon J, Davis BJ, Rezak M (1977) Auditory--visual interaction in single cells in the cortex of the superior temporal sulcus and the orbital frontal cortex of the macaque monkey. Exp Neurol 57:849–872

    Article  PubMed  CAS  Google Scholar 

  • Bernstein LE, Auer ET Jr, Moore JK, Ponton CW, Don M, Singh M (2002) Visual speech perception without primary auditory cortex activation. Neuroreport 13:311–315

    Article  PubMed  Google Scholar 

  • Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46:369–384

    PubMed  CAS  Google Scholar 

  • Calvert GA (2001) Crossmodal processing in the human brain: insights from functional neuroimaging studies. Cereb Cortex 11:1110–1123

    Article  PubMed  CAS  Google Scholar 

  • Calvert GA, Campbell R (2003) Reading speech from still and moving faces: the neural substrates of visible speech. J Cogn Neurosci 15:57–70

    Article  PubMed  Google Scholar 

  • Calvert GA, Brammer MJ, Bullmore ET, Campbell R, Iversen SD, David AS (1999) Response amplification in sensory-specific cortices during crossmodal binding. Neuroreport 10:2619–2623

    Article  PubMed  CAS  Google Scholar 

  • Calvert GA, Bullmore ET, Brammer MJ, Campbell R, Williams SC, McGuire PK, Woodruff PW, Iversen SD, David AS (1997) Activation of auditory cortex during silent lipreading. Science 276:593–596

    Article  PubMed  CAS  Google Scholar 

  • Chiry O, Tardif E, Magistretti PJ, Clarke S (2003) Patterns of calcium-binding proteins support parallel and hierarchical organization of human auditory areas. Eur J Neurosci 17:397–410

    Article  PubMed  Google Scholar 

  • Clarke S, Rivier F (1998) Compartments within human primary auditory cortex: evidence from cytochrome oxidase and acetylcholinesterase staining. Eur J Neurosci 10:741–745

    Article  PubMed  CAS  Google Scholar 

  • Crivello F, Schormann T, Tzourio-Mazoyer N, Roland PE, Zilles K, Mazoyer BM (2002) Comparison of spatial normalization procedures and their impact on functional maps. Hum Brain Mapp 16:228–250

    Article  PubMed  Google Scholar 

  • Desai R, Liebenthal E, Possing ET, Waldron E, Binder JR (2005) Volumetric vs. surface-based alignment for localization of auditory cortex activation. Neuroimage 26:1019–1029

    Article  PubMed  Google Scholar 

  • Driver J, Spence C (1998) Crossmodal attention. Curr Opin Neurobiol 8:245–253

    Article  PubMed  CAS  Google Scholar 

  • Driver J, Noesselt T (2008) Multisensory interplay reveals crossmodal influences on 'sensory-specific' brain regions, neural responses, and judgments. Neuron 57:11–23

    Article  PubMed  CAS  Google Scholar 

  • Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ, Shadlen MN (1994) fMRI of human visual cortex. Nature 369:525

    Article  PubMed  CAS  Google Scholar 

  • Felleman DJ, van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  PubMed  CAS  Google Scholar 

  • Fergus A, Lee KS (1997) GABAergic regulation of cerebral microvascular tone in the rat. J Cereb Blood Flow Metab 17:992–1003

    Article  PubMed  CAS  Google Scholar 

  • Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, Goebel R (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40:859–869

    Article  PubMed  CAS  Google Scholar 

  • Foxe JJ, Schroeder CE (2005) The case for feedforward multisensory convergence during early cortical processing. Neuroreport 16:419–423

    Article  PubMed  Google Scholar 

  • Foxe JJ, Wylie GR, Martinez A, Schroeder CE, Javitt DC, Guilfoyle D, Ritter W, Murray MM (2002) Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study. J Neurophysiol 88:540–543

    PubMed  Google Scholar 

  • Fullerton BC, Pandya DN (2007) Architectonic analysis of the auditory-related areas of the superior temporal region in human brain. J Comp Neurol 504:470–498

    Article  PubMed  Google Scholar 

  • Ghazanfar AA, Schroeder CE (2006) Is neocortex essentially multisensory? Trends Cogn Sci 10:278–285

    Article  PubMed  Google Scholar 

  • Goense J, Logothetis N (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol In Press

    Google Scholar 

  • Hackett TA, Stepniewska I, Kaas JH (1998) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J Comp Neurol 394:475–495

    Article  PubMed  CAS  Google Scholar 

  • Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441:197–222

    Article  PubMed  CAS  Google Scholar 

  • Hershenson M (1962) Reaction time as a measure of intersensory facilitation. J Exp Psychol 63:289–293

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka K, Iwai E, Saito H, Tanaka K (1988) Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. J Neurophysiol 60:1615–1637

    PubMed  CAS  Google Scholar 

  • Hyvarinen J, Shelepin Y (1979) Distribution of visual and somatic functions in the parietal associative area 7 of the monkey. Brain Res 169:561–564

    Article  PubMed  CAS  Google Scholar 

  • Jones EG, Powell TP (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–820

    Article  PubMed  CAS  Google Scholar 

  • Kayser C, Logothetis NK (2007) Do early sensory cortices integrate cross-modal information? Brain Struct Funct 212

    Google Scholar 

  • Kayser C, Petkov CI, Augath M, Logothetis NK (2005) Integration of touch and sound in auditory cortex. Neuron 48:373–384

    Article  PubMed  CAS  Google Scholar 

  • Kayser C, Petkov CI, Augath M, Logothetis NK (2007) Functional imaging reveals visual modulation of specific fields in auditory cortex. J Neurosci 27:1824–1835

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi Y, Rauschecker JP, Mishkin M, Augath M, Logothetis N, Petkov C (2008) Voice region connectivity in the monkey assessed with microstimulation and functional imaging. In: Program No. 850.2. 2008 Neuroscience meeting planner. Society for Neuroscience, 2008, Washington, DC. Online

    Google Scholar 

  • Kosaki H, Hashikawa T, He J, Jones EG (1997) Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. J Comp Neurol 386:304–316

    Article  PubMed  CAS  Google Scholar 

  • Lakatos P, Chen CM, O'Connell MN, Mills A, Schroeder CE (2007) Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron 53:279–292

    Article  PubMed  CAS  Google Scholar 

  • Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320:110–113

    Article  PubMed  CAS  Google Scholar 

  • Laurienti PJ, Perrault TJ, Stanford TR, Wallace MT, Stein BE (2005) On the use of superadditivity as a metric for characterizing multisensory integration in functional neuroimaging studies. Exp Brain Res 166:298–297

    Article  Google Scholar 

  • Lauritzen M (2005) Reading vascular changes in brain imaging: is dendritic calcium the key? Nat Rev Neurosci 6:77–85

    Article  PubMed  CAS  Google Scholar 

  • Lauritzen M, Gold L (2003) Brain function and neurophysiological correlates of signals used in functional neuroimaging. J Neurosci 23:3972–3980

    PubMed  CAS  Google Scholar 

  • Lehmann C, Herdener M, Esposito F, Hubl D, di Salle F, Scheffler K, Bach DR, Federspiel A, Kretz R, Dierks T, Seifritz E (2006) Differential patterns of multisensory interactions in core and belt areas of human auditory cortex. Neuroimage 31:294–300

    Article  PubMed  Google Scholar 

  • Lehmann S, Murray MM (2005) The role of multisensory memories in unisensory object discrimination. Brain Res Cogn Brain Res 24:326–334

    Article  PubMed  Google Scholar 

  • Logothetis NK (2002) The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 357:1003–1037

    Article  PubMed  Google Scholar 

  • Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453:869–878

    Article  PubMed  CAS  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  PubMed  CAS  Google Scholar 

  • Lutkenhoner B, Lammertmann C, Simoes C, Hari R (2002) Magnetoencephalographic correlates of audiotactile interaction. Neuroimage 15:509–522

    Article  PubMed  CAS  Google Scholar 

  • Martuzzi R, Murray MM, Michel CM, Thiran JP, Maeder PP, Clarke S, Meuli RA (2006) Multisensory interactions within human primary cortices revealed by BOLD dynamics. Cereb Cortex 17:1672–1679

    Article  PubMed  Google Scholar 

  • Mathiesen C, Caesar K, Lauritzen M (2000) Temporal coupling between neuronal activity and blood flow in rat cerebellar cortex as indicated by field potential analysis. J Physiol 523 Pt 1:235–246

    Article  Google Scholar 

  • Mathiesen C, Caesar K, Akgoren N, Lauritzen M (1998) Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J Physiol 512(Pt 2):555–566

    Article  PubMed  CAS  Google Scholar 

  • McDonald JJ, Teder-Salejarvi WA, Hillyard SA (2000) Involuntary orienting to sound improves visual perception. Nature 407:906–908

    Article  PubMed  CAS  Google Scholar 

  • Merzenich MM, Brugge JF (1973) Representation of the cochlear partition of the superior temporal plane of the macaque monkey. Brain Res 50:275–296

    Article  PubMed  CAS  Google Scholar 

  • Morel A, Garraghty PE, Kaas JH (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J Comp Neurol 335:437–459

    Article  PubMed  CAS  Google Scholar 

  • Mukamel R, Gelbard H, Arieli A, Hasson U, Fried I, Malach R (2005) Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science 309:951–954

    Article  PubMed  CAS  Google Scholar 

  • Murray MM, Molholm S, Michel CM, Heslenfeld DJ, Ritter W, Javitt DC, Schroeder CE, Foxe JJ (2005) Grabbing your ear: rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment. Cereb Cortex 15:963–974

    Article  PubMed  Google Scholar 

  • Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RA (2005) Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309:948–951

    Article  PubMed  CAS  Google Scholar 

  • Nir Y, Fisch L, Mukamel R, Gelbard-Sagiv H, Arieli A, Fried I, Malach R (2007) Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr Biol 17:1275–1285

    Article  PubMed  CAS  Google Scholar 

  • Norup Nielsen A, Lauritzen M (2001) Coupling and uncoupling of activity-dependent increases of neuronal activity and blood flow in rat somatosensory cortex. J Physiol 533:773–785

    Article  PubMed  CAS  Google Scholar 

  • Pekkola J, Ojanen V, Autti T, Jaaskelainen IP, Mottonen R, Sams M (2005a) Attention to visual speech gestures enhances hemodynamic activity in the left planum temporale. Hum Brain Mapp 27:471–477

    Article  Google Scholar 

  • Pekkola J, Ojanen V, Autti T, Jaaskelainen IP, Mottonen R, Tarkiainen A, Sams M (2005b) Primary auditory cortex activation by visual speech: an fMRI study at 3 T. Neuroreport 16:125–128

    Article  PubMed  Google Scholar 

  • Petkov C, Kayser C, Ghazanfar AA, Patterson RD, Logothetis N (2008a) Functional imaging of sensitivity to components of the voice in monkey auditory cortex. In: Program No. 851.19. 2008 Neuroscience meeting planner. Society for Neuroscience, Washington, DC. Online

    Google Scholar 

  • Petkov C, Kayser C, Steudel T, Whittingstall K, Augath M, Logothetis N (2008b) A voice region in the monkey brain. Nat Neurosci 11:367–374

    Article  PubMed  CAS  Google Scholar 

  • Petkov CI, Kayser C, Augath M, Logothetis NK (2006) Functional imaging reveals numerous fields in the monkey auditory cortex. PLOS Biol 4:e215

    Article  PubMed  Google Scholar 

  • Rademacher J, Caviness VS, Jr., Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3:313–329

    Article  PubMed  CAS  Google Scholar 

  • Rauschecker JP (1998) Cortical processing of complex sounds. Curr Opin Neurobiol 8:516–521

    Article  PubMed  CAS  Google Scholar 

  • Rauschecker JP, Tian B (2004) Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey. J Neurophysiol 91:2578–2589

    Article  PubMed  Google Scholar 

  • Rauschecker JP, Tian B, Pons T, Mishkin M (1997) Serial and parallel processing in rhesus monkey auditory cortex. J Comp Neurol 382:89–103

    Article  PubMed  CAS  Google Scholar 

  • Recanzone GH, Guard DC, Phan ML (2000) Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. J Neurophysiol 83:2315–2331

    PubMed  CAS  Google Scholar 

  • Rivier F, Clarke S (1997) Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. Neuroimage 6:288–304

    Article  PubMed  CAS  Google Scholar 

  • Schroeder CE, Molholm S, Lakatos P, Ritter W, Foxe JJ (2004) Human–simian correspondence in the early cortical processing of multisensory cues. Cogn Process 5:140–151

    Article  Google Scholar 

  • Schroeder CE, Lakatos P, Kajikawa Y, Partan S, Puce A (2008) Neuronal oscillations and visual amplification of speech. Trends Cogn Sci 12:106–113

    Article  PubMed  Google Scholar 

  • Schurmann M, Caetano G, Hlushchuk Y, Jousmaki V, Hari R (2006) Touch activates human auditory cortex. Neuroimage 30:1325–1331

    Article  PubMed  Google Scholar 

  • Seitz AR, Kim R, Shams L (2006) Sound facilitates visual learning. Curr Biol 16:1422–1427

    Article  PubMed  CAS  Google Scholar 

  • Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9:569–577

    Article  PubMed  CAS  Google Scholar 

  • Stein BE, Meredith MA (1993) Merging of the senses. MIT Press, Cambridge

    Google Scholar 

  • Sumby WH, Polack I (1954) Visual contribution to speech intelligibility in noise. J Acoust Soc Am 26:212–215

    Article  Google Scholar 

  • Talavage TM, Sereno MI, Melcher JR, Ledden PJ, Rosen BR, Dale AM (2004) Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J Neurophysiol 91:1282–1296

    Article  PubMed  Google Scholar 

  • Thomsen K, Offenhauser N, Lauritzen M (2004) Principal neuron spiking: neither necessary nor sufficient for cerebral blood flow in rat cerebellum. J Physiol 560:181–189

    Article  PubMed  CAS  Google Scholar 

  • van Atteveldt N, Formisano E, Goebel R, Blomert L (2004) Integration of letters and speech sounds in the human brain. Neuron 43:271–282

    Article  PubMed  Google Scholar 

  • van Wassenhove V, Grant KW, Poeppel D (2005) Visual speech speeds up the neural processing of auditory speech. Proc Natl Acad Sci U S A 102:1181–1186

    Article  PubMed  Google Scholar 

  • Vroomen J, de Gelder B (2000) Sound enhances visual perception: cross-modal effects of auditory organization on vision. J Exp Psychol Hum Percept Perform 26:1583–1590

    Article  PubMed  CAS  Google Scholar 

  • Warnking J, Dojat M, Guerin-Dugue A, Delon-Martin C, Olympieff S, Richard N, Chehikian A, Segebarth C (2002) fMRI retinotopic mapping--step by step. Neuroimage 17:1665–1683

    Article  PubMed  CAS  Google Scholar 

  • Wessinger CM, Buonocore MH, Kussmaul CL, Mangun GR (1997) Tonotopy in human auditory cortex examined with functional magnetic resonance imaging. Neuroimage 5:18–25

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Max Planck Society and the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Kayser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Kayser, C., Petkov, C.I., Logothetis, N.K. (2010). Imaging Cross-Modal Influences in Auditory Cortex. In: Kaiser, J., Naumer, M. (eds) Multisensory Object Perception in the Primate Brain. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5615-6_8

Download citation

Publish with us

Policies and ethics