Advertisement

Some Recent Studies on the Local Reactivity of O2 on Pt3 Nanoislands Supported on Mono- and Bi-Metallic Backgrounds

  • Juan C. Sotelo
  • Jorge M. Seminario
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 50)

Abstract

Small bimetallic clusters have shown in recent years their potential as catalysts and high-density magnetic data storage materials. These nanoscale alloys present a number of structures and phases different from those of their bulk counterparts. Taking advantage of this large spectrum of possibilities, it is in principle possible to design and build materials with specific novel properties dependent on the size and concentration of the nano-alloys. Some constituents are more amenable than others to be used as components of nanomaterials in this emerging paradigm. Transition-metal bimetallic clusters, for example, form an important class of the former, yet tailoring of desired properties of these clusters are sometimes difficult to achieve because of the complexity of their electronic structure.

Keywords

Physical Review Oxygen Molecule Local Neighborhood Physical Review Letter Antibonding State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, and N. M. Markovic, Nat. Mater 6 (3), (2007) 241; W. Kuch, Nat. Mater 2 (8), (2003) 505; S. Rusponi, T. Cren, N. Weiss, M. Epple, P. Buluschek, L. Claude, and H. Brune, Nat. Mater 2 (8), (2003) 546.Google Scholar
  2. 2.
    A. Sebetci, Z. B. Guvenc, and H. Kokten, International Journal of Modern Physics C 15 (7), (2004) 981; L. Xiao and L. C. Wang, Journal of Physical Chemistry A 108 (41), (2004) 8605; Y. H. Chui and K. Y. Chan, Molecular Simulation 30 (10), (2004) 679; A. Sebetci and Z. B. Guvenc, Modelling and Simulation in Materials Science and Engineering 12 (6), (2004) 1131; A. Sebetci, Z. B. Guvenc, and H. Kokten, Computational Materials Science 35 (3), (2006) 192.Google Scholar
  3. 3.
    M. Gilliot, A. E. Naciri, L. Johann, J. P. Stoquert, J. J. Grob, D. Muller, and M. Stchakovsky, Physical Review B 74 (4) (2006) 045423(1–8); M. B. Knickelbein, Journal of Chemical Physics 125 (4) (2006) 044308(1–7); J. L. Rodriguez-Lopez, F. Aguilera-Granja, K. Michaelian, and A. Vega, Physical Review B 67 (17) (2003) 174413(1–9); Y. N. Xie and J. A. Blackman, Physical Review B 66 (15) (2002) 155417(1–7); Y. N. Xie and J. A. Blackman, Physical Review B 66 (8) (2002) 085410(1–5); E. L. Uzunova, G. St Nikolov, and H. Mikosch, Journal of Physical Chemistry A 106 (16), (2002) 4104; A. Pramann, K. Koyasu, A. Nakajima, and K. Kaya, Journal of Physical Chemistry A 106 (11), (2002) 2483; R. Guirado-Lopez, F. Aguilera-Granja, and J. M. Montejano-Carrizales, Physical Review B 65 (4) (2002) 045420(1–9); D. Gerion, A. Hirt, I. M. L. Billas, A. Chatelain, and W. A. de Heer, Physical Review B 62 (11), (2000) 7491.Google Scholar
  4. 4.
    S. Pick, V. S. Stepanyuk, A. L. Klavsyuk, L. Niebergall, W. Hergert, J. Kirschner, and P. Bruno, Physical Review B 70 (22) (2004) 224419(1–8).Google Scholar
  5. 5.
    J. A. Sotelo, L. Yan, M. Wang, and J. M. Seminario, Phys. Rev. A 75 (2), (2007) 022511.Google Scholar
  6. 6.
    A. Bzowski, M. Kuhn, T. K. Sham, J. A. Rodriguez, and J. Hrbek, Physical Review B 59 (20), (1999) 13379; A. Bzowski and T. K. Sham, Physical Review B 48 (11), (1993) 7836; M. Kuhn, Z. H. Lu, and T. K. Sham, Physical Review B 45 (7), (1992) 3703; S. Sankaranarayanan, V. R. Bhethanabotla, and B. Joseph, Physical Review B 72 (19) (2005) 195405(1–15); S. Sankaranarayanan, V. R. Bhethanabotla, and B. Joseph, Physical Review B 71 (19) (2005) (195415(1–15)); T. K. Sham, A. Hiraya, and M. Watanabe, Physical Review B 55 (12), (1997) 7585.Google Scholar
  7. 7.
    J. F. Fernandez and J. J. Alonso, Physical Review B 76 (1) (2007) 014403(1–6); M. Ikegami, H. Okamoto, and Y. Yuri, Physical Review Special Topics-Accelerators and Beams 9 (12) (2006); W. M. Witzel and S. Das Sarma, Physical Review B 76 (4) (2007) 045218(1–10); J. Wunderlich, A. C. Irvine, J. Zemen, V. Holy, A. W. Rushforth, E. De Ranieri, U. Rana, K. Vyborny, J. Sinova, C. T. Foxon, R. P. Campion, D. A. Williams, B. L. Gallagher, and T. Jungwirth, Physical Review B 76 (5) (2007) 054424(1–8); F. Zhai and H. Q. Xu, Physical Review B 76 (3) (2007) 035306(1–5).Google Scholar
  8. 8.
    A. Cehovin, C. M. Canali, and A. H. MacDonald, Physical Review B 66 (9) (2002) 094430(1–15).Google Scholar
  9. 9.
    J. E. Grose, A. N. Pasupathy, D. C. Ralph, B. Ulgut, and H. D. Abruna, Physical Review B 71 (3) (2005) 035306(1–5).Google Scholar
  10. 10.
    L. Angers, A. Chepelianskii, R. Deblock, B. Reulet, and H. Bouchiat, Physical Review B 76 (7) (2007) 075331(1–11); A. Caprez, B. Barwick, and H. Batelaan, Physical Review Letters 99 (21) (2007) 210401(1–4); S. Jo, G. L. Khym, D. I. Chang, Y. Chung, H. J. Lee, K. Kang, D. Mahalu, and V. Umansky, Physical Review B 76 (3) (2007) 035110(1–8); I. O. Kulik, Physical Review B 76 (12) (2007)125313(1–7); S. Uryu and T. Ando, Physical Review B 76 (11) (2007) 115420(1–6); Y. Aharonov and L. Vaidman, Ann. NY Acad. Sci. 755, (1995) 361; Y. Aharonov and L. Vaidman, Phys. Rev. A 56 (1), (1997) 1055.Google Scholar
  11. 11.
    M. Valden, X. Lai, and D. W. Goodman, Science 281 (5383), (1998) 1647.Google Scholar
  12. 12.
    R. J. Magyar, V. Mujica, M. Marquez, and C. Gonzalez, Physical Review B (Condensed Matter and Materials Physics) 75 (14), (2007) 144421.Google Scholar
  13. 13.
    L. Yan and J. M. Seminario, Int. J. Quantum Chem. 107 (2), (2007) 440; J. M. Seminario, Y. Ma, L. A. Agapito, L. Yan, R. A. Araujo, S. Bingi, N. S. Vadlamani, K. Chagarlamudi, T. S. Sudarshan, M. L. Myrick, P. E. Colavita, P. D. Franzon, D. P. Nackashi, L. Cheng, Y. Yao, and J. M. Tour, J. Nanoscience Nanotech. 4 (7), (2004) 907.Google Scholar
  14. 14.
    Y. Ma and P. B. Balbuena, Chem. Phys. Lett. 447, (2007) 289; C. R. Henry, Surface Science Reports 31 (7–8), (1998) 231; T. V. Choudhary and D. W. Goodman, Applied Catalysis a-General 291 (1–2), (2005) 32; K. Luo, X. Lai, C. W. Yi, K. A. Davis, K. K. Gath, and D. W. Goodman, Journal of Physical Chemistry B 109 (9), (2005) 4064; W. T. Wallace, B. K. Min, and D. W. Goodman, Topics in Catalysis 34 (1–4), (2005) 17.Google Scholar
  15. 15.
    S. R. Calvo and P. B. Balbuena, Surf. Sci. 601, (2007) 165; S. R. Calvo and P. B. Balbuena, Surf. Sci. 601, (2007) 4786; M. Chen, D. Kumar, C.-W. Yi, and D. W. Goodman, Science 310, (2005) 291; M. S. Chen and D. W. Goodman, Science 306 (5694), (2004) 252.Google Scholar
  16. 16.
    M. J. Lopez, P. A. Marcos, and J. A. Alonso, J. Chem. Phys. 104 (3), (1996) 1056; J. A. Rodriguez, Surf. Sci. Rep. 24, (1996) 223; J. H. Sinfelt, Bimetallic Catalysts. Discoveries, Concepts and Applications. (Wiley, New York, 1983).Google Scholar
  17. 17.
    B. Hammer, J. K. Norskov, and C. G. a. H. K. Bruce, in Advances in Catalysis (Academic Press, 2000), Vol. Volume 45, p. 71; J. R. Kitchin, J. K. Norskov, M. A. Barteau, and J. G. Chen, Physical Review Letters 93 (15), (2004) 156801; M. Mavrikakis, B. Hammer, and J. K. Nørskov, Physical Review Letters 81 (13), (1998) 2819; B. Hammer and J. K. Norskov, Surface Science 343 (3), (1995) 211.Google Scholar
  18. 18.
    J. R. Kitchin, J. K. Norskov, M. A. Barteau, and J. G. Chen, The Journal of Chemical Physics 120 (21), (2004) 10240.Google Scholar
  19. 19.
    P. B. Balbuena, S. R. Calvo, E. J. Lamas, P. F. Salazar, and J. M. Seminario, J. Phys. Chem. B 110, (2006) 17452; Y. Wang and P. B. Balbuena, J. Phys. Chem. B 109 (18), (2005) 18902; J. M. Seminario, L. A. Agapito, L. Yan, and P. B. Balbuena, Chem. Phys. Lett. 410 (4–6), (2005) 275; P. B. Balbuena, D. Altomare, N. Vadlamani, S. Bingi, L. A. Agapito, and J. M. Seminario, J. Phys. Chem. A 108 (30), 6378 (2004); P. B. Balbuena, D. Altomare, L. A. Agapito, and J. M. Seminario, J. Phys. Chem. B 107 (49), (2003) 13671.Google Scholar
  20. 20.
    J. C. Sotelo and J. M. Seminario, The Journal of Chemical Physics 127 (24), (2007) 244706.Google Scholar
  21. 21.
    J. C. Sotelo and J. M. Seminario, The Journal of Chemical Physics 128 (20), (2008) 204701.Google Scholar
  22. 22.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven Jr, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian-2003, Revision B.4 (Gaussian, Inc., Pittsburgh PA, 2003).Google Scholar
  23. 23.
    J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46 (11), (1992) 6671; J. P. Perdew and Y. Wang, Phys. Rev. B 45 (23), (1992) 13244.Google Scholar
  24. 24.
    A. D. Becke, J. Chem. Phys. 98, (1993) 1372.Google Scholar
  25. 25.
    A. D. Becke, Phys. Rev. A 38 (6), (1988) 3098.Google Scholar
  26. 26.
    W. R. Wadt and P. J. Hay, J. Chem. Phys. 82 (1), (1985) 284; P. J. Hay and W. R. Wadt, J. Chem. Phys. 82 (1), (1985) 270; P. J. Hay, J. Chem. Phys. 66 (10), (1977) 4377.Google Scholar
  27. 27.
    P. C. Hariharan and J. A. Pople, Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 28 (3), (1973) 213; W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56 (5), (1972) 2257.Google Scholar
  28. 28.
    H. B. Schlegel, J. Comput. Chem. 3, (1982) 214.Google Scholar
  29. 29.
    G. Y. Sun, J. Kurti, P. Rajczy, M. Kertesz, J. Hafner, and G. Kresse, Journal of Molecular Structure-Theochem 624, (2003) 37; J. Paier, R. Hirschl, M. Marsman, and G. Kresse, Journal of Chemical Physics 122 (23) (2005) 234102(1–13); D. Hobbs, G. Kresse, and J. Hafner, Physical Review B 62 (17), (2000) 11556; G. Kresse and J. Furthmuller, Physical Review B 54 (16), (1996) 11169.Google Scholar
  30. 30.
    P. E. Blöchl, O. Jepsen, and O. K. Andersen, Physical Review B 49 (23) (1994) 16223.Google Scholar
  31. 31.
    J. M. Seminario, A. G. Zacarias, and J. M. Tour, J. Phys. Chem. A 103 (39) (1999) 7883; J. M. Seminario, C. E. De La Cruz, and P. A. Derosa, J. Am. Chem. Soc. 123 (2001) 5616; J. M. Seminario, Proc. IEEE Nanotech. Conf. 4 (2004) 518; J. M. Seminario, C. De La Cruz, P. A. Derosa, and L. Yan, J. Phys. Chem. B 108 (46), 17879 (2004); J. M. Seminario, Nature Materials 4 (2) (2005) 111; J. M. Seminario, L. Yan, and Y. Ma, Proc. IEEE 93 (10) (2005) 1753.Google Scholar
  32. 32.
    P. A. Derosa and J. M. Seminario, J. Phys. Chem. B 105 (2) (2001) 471; J. M. Seminario, A. G. Zacarias, and P. A. Derosa, J. Chem. Phys. 116 (2002) 1671; J. M. Seminario, L. E. Cordova, and P. A. Derosa, Proc. IEEE 91 (11) (2003) 1958; J. M. Seminario and L. Yan, Int. J. Quantum Chem. 102 (2005) 711.Google Scholar
  33. 33.
    L. Yan and J. M. Seminario, J. Phys. Chem. A 109 (30) (2005) 6628; J. C. Sotelo, L. Yan, M. Wang, and J. M. Seminario, Physical Review A (Atomic, Molecular, and Optical Physics) 75 (2) (2007) 022511.Google Scholar
  34. 34.
    A. Eichler and J. Hafner, Physical Review Letters 79 (22) (1997) 4481.Google Scholar
  35. 35.
    S. Inagaki, Journal of the Physical Society of Japan 75 (4) (2006) 044706(1–4); S. Tang and J. E. Hirsch, Physical Review B 42 (1), (1990) 771; Y. Nagaoka, Physical Review 147 (1) (1966) 392.Google Scholar
  36. 36.
    A. Kootte, C. Haas, and R. A. d. Groot, Journal of Physics: Condensed Matter 3 (9) (1991) 1133.Google Scholar
  37. 37.
    A. Kashyap, K. B. Garg, A. K. Solanki, T. Nautiyal, and S. Auluck, Physical Review B 60 (4) (1999) 2262.Google Scholar
  38. 38.
    A. Roudgar and A. Groß, Journal of Electroanalytical Chemistry 548, (2003) 121.Google Scholar
  39. 39.
    A. Roudgar and A. Gross, Surface Science 559 (2–3) (2004) L180.Google Scholar
  40. 40.
    J. K. Norskov, T. Bligaard, A. Logadottir, S. Bahn, L. B. Hansen, M. Bollinger, H. Bengaard, B. Hammer, Z. Sljivancanin, M. Mavrikakis, Y. Xu, S. Dahl, and C. J. H. Jacobsen, Journal of Catalysis 209 (2) (2002) 275.Google Scholar
  41. 41.
    A. Eichler, F. Mittendorfer, and J. Hafner, Physical Review B 62 (7), (2000) 4744.Google Scholar
  42. 42.
    R. Adzic, in Electrocatalysis, edited by J. Lipkowski and P. N. Ross (Wiley-VCH, New York, 1998), p. 197.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Juan C. Sotelo
    • 1
  • Jorge M. Seminario
    • 1
    • 2
  1. 1.Department of Chemical EngineeringTexas A&M UniversityTexasUSA
  2. 2.Department of Electrical and Computer EngineeringTexas A&M UniversityTexasUSA

Personalised recommendations