Mass Spectrometry Techniques in the Analysis of Bioaerosols: Development and Advancement

  • Rabih E. JabbourEmail author
  • Samir V. Deshpande
  • A. Peter Snyder
  • Mary M. Wade
Part of the Integrated Analytical Systems book series (ANASYS)


Bioaerosols are airborne particles that may contain pathogenic species that can cause serious risks to various government and public sectors. The major health concern due to bioaerosols is that certain communicable diseases are transmitted through airborne particles, including viruses, bacteria, and fungi. Biological warfare agents can be disseminated as bioaerosol particles and could pose severe safety issues for military operations as well as serious economic and health concerns to the public. Thus, it is imperative to develop and implement real-time detection and accurate identification technologies for the monitoring of bioaerosols. Mass spectrometry (MS) techniques have been developed and improved in their sensitivity, fieldability, and compatibility to bioaerosol analysis and characterization in real-time settings. MS techniques have shown promise in the real-time analysis of bioaerosols. An overview of bioaerosol MS is presented for general perspectives on its application for detection and identification capabilities. Also, the capabilities of MS techniques and the nature of their output and impact on the detection and identification of bioaerosols will be discussed. Exploration of the advantages and drawbacks of the applications for different MS techniques in the analysis of bioaerosols is addressed.


Dust Sample Sinapinic Acid Mass Spectrometry Technique Picolinic Acid Bacterial Aerosol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank Mrs. Cynthia Swim and Mr. Alan Zulich and Dr. Vicky Bevilacqua for administrative and technical support.


  1. 1.
    Basile F, Voorhees KJ, Hadfield TL (1995) Microorganism Gram-type differentiation based on pyrolysis-mass spectrometry of bacterial fatty acid methyl ester extracts. Appl Environ Microbiol 61: 1534–1539Google Scholar
  2. 2.
    Basile F, Beverly MB, Abbas-hawks C, Mowry CD, Voorhees KJ, Hadfield TL (1998) Direct mass spectrometric evidence of in situ thermally hydrolyzed and methylated lipids from whole bacterial cells. Anal Chem 70: 1555–1562CrossRefGoogle Scholar
  3. 3.
    Beeson MD, Murray KK, Russell DH (1995) Aerosol matrix-assisted laser desorption ionization: effect of analyte concentration and matrix-to-analyte ratio. Anal Chem 67:1981–1986CrossRefGoogle Scholar
  4. 4.
    Bente M, Sklorz M, Streibel T, Zimmermann R (2009) Online laser desorption-multiphoton positionization mass spectrometry of individual aerosol particles: Molecular source indicators for particles emitted from different traffic-related and wood combustion sources. Anal Chem 81:4456–4467CrossRefGoogle Scholar
  5. 5.
    Breed RS, Murray EGD, Smith NR (eds) (1957) Bergey’s Manual of Determinative Bacteriology. The Williams and Wilkins Co., Baltimore, MD, 7th ed, pp 295–305.Google Scholar
  6. 6.
    Czerwieniec GA, Russell SC, Tobias HJ, Pitesky ME, Fergenson DP, Steele P, Srivastava A, Horn JM, Frank M, Gard EE, LeBrilla CB (2005) Stable isotope labeling of entire Bacillus atrophaeus spores and vegetative cells using bioaerosol mass spectrometry. Anal Chem 77:1081–1087CrossRefGoogle Scholar
  7. 7.
    de B Harrington P, Street TE, Voorhees KJ, Radicati di Brozolo F, Odom RW (1989) Rule-building expert system for classification of mass spectra. Anal Chem 61: 715–719CrossRefGoogle Scholar
  8. 8.
    DeLuca S, Sarver EW, de B Harrington P, Voorhees KJ (1990) Direct analysis of bacterial fatty acids by Curie-point pyrolysis tandem mass spectrometry. Anal Chem 62: 1465–1472CrossRefGoogle Scholar
  9. 9.
    DeLuca SJ, Voorhees KJ (1993) A comparison of products from an air atmosphere tube furnace with a vacuum Curie-point pyrolyzer: implications for biodetection. J Anal Appl Pyrolysis 24: 211–225CrossRefGoogle Scholar
  10. 10.
    Dixon TC, Meselson M, Guillemin J, Hanna PC (1999) Medical progress: anthrax. N Engl J Med 341:815–826CrossRefGoogle Scholar
  11. 11.
    Dongre AR, Eng JK, Yates III JR (1997) Emerging tandem-mass-spectrometry techniques for the rapid identification of proteins. Tibtech 15: 418–425CrossRefGoogle Scholar
  12. 12.
    Dworzanski JP, Berwald L, Meuzelaar HLC (1990) Pyrolytic methylation-gas chromatography of whole bacterial cells for rapid profiling of cellular fatty acids. Appl Environ Microbiol 56: 1717–1724Google Scholar
  13. 13.
    Dworzanski JP, Berwald L, McClennen WH, Meuzelaar HLC (1991) Mechanistic aspects of pyrolytic methylation and transesterification of bacterial cell wall lipids. J Anal Appl Pyrolysis 21:221–232CrossRefGoogle Scholar
  14. 14.
    Dworzanski JP, Snyder AP (2005) Classification and identification of bacteria using mass spectrometry-based proteomics. Expert Rev Proteomics 2: 863–878CrossRefGoogle Scholar
  15. 15.
    Esposito AP, Talley CE, Huser T, Hollars CW, Schaldach CM, Lane SM (2003) Analysis of single bacterial spores by micro-Raman spectroscopy. Appl Spectrosc 57:868–871CrossRefGoogle Scholar
  16. 16.
    Fei X, Wei G, Murray KK (1996) Aerosol MALDI with a reflectron time-of-flight mass spectrometer. Anal Chem 68:1143–1147Google Scholar
  17. 17.
    Fergenson DP, Pitesky ME, Tobias HJ, Steele PT, Czerwieniec GA, Russell SC, Lebrilla CB, Horn JM, Coffee, KR, Srivastava A, Pillai SP, Shih MTP, Hall HL, Ramponi AJ, Chang JT, Langlois RG, Estacio PL, Hadley RT, Frank M, Gard EE (2004) Reagentless detection and classification of individual bioaerosol particles in seconds. Anal Chem 76:373–378Google Scholar
  18. 18.
    Fox A, Morgan SL, Gilbart J (1989) Preparation of alditol acetates and their analysis by gas chromatography and mass spectrometry. In: Biermann CJ, McGinnis GD (eds) Analysis of Carbohydrates by GLC and MS. CRC Press, Boca Raton, FL, pages 87–117Google Scholar
  19. 19.
    Fox A, Black GE (1993) Identification and detection of carbohydrate markers for bacteria. Derivatization and gas chromatography-mass spectrometry. In: Fenselau C (ed) Mass Spectrometry for the Characterization of Microorganisms. American Chemical Society, Washington, DC, pages 107–131CrossRefGoogle Scholar
  20. 20.
    Fox A, Rosario RMT, Larsson L (1993) Monitoring of bacterial sugars and hydroxyl fatty acids in dust form air conditioners by gas chromatography-mass spectrometry. Appl Environ Microbiol 59:4354–4360Google Scholar
  21. 21.
    Fox A, Rosario RMT (1994) Quantification of muramic acid, a marker for bacterial peptidoglycan, in dust collected from hospital and home air-conditioning filters using gas chromatography-mass spectrometry. Indoor Air 4:239–247Google Scholar
  22. 22.
    Fox A, Wright L, Fox K (1995) Gas chromatography-tandem mass spectrometry for trace detection of muramic acid, a peptidoglycan chemical marker, in organic dust. J Microbiol Methods 22:11–26CrossRefGoogle Scholar
  23. 23.
    Gard E, Mayer JE, Morricai BD, Dienes T, Fergenson DP, Prather KA (1997) Real-time analysis of individual atmospheric aerosol particles: Design and performance of a portable ATOFMS. Anal Chem 69:4083–4091CrossRefGoogle Scholar
  24. 24.
    Gieray RA, Reilly PTA, Yang M, Whitten WB, Ramsey JM (1997) Real-time detection of individual airborne bacteria. J Microbiol Methods 29:191–199CrossRefGoogle Scholar
  25. 25.
    Griest WH, Wise MB, Hart KJ, Lammert SA, Thompson CV, Vass AA (2001) Biological agent detection and identification by the Block II chemical biological mass spectrometer. Field Anal Chem Technol 5: 177–184CrossRefGoogle Scholar
  26. 26.
    Harris WA, Reilly PTA, Whitten WB (2005) MALDI of individual biomolecule-containing airborne particles in an ion trap mass spectrometer. Anal Chem 77:4042–4050CrossRefGoogle Scholar
  27. 27.
    Hart KJ, Wise MB, Griest WH, Lammert SA (2000) Design, development, and performance of a fieldable chemical and biological agent detector. Field Anal Chem Technol 4: 93–110CrossRefGoogle Scholar
  28. 28.
    Havey CD, Basile F, Mowry C, Voorhees KJ (2004) Evaluation of a micro-fabricated pyrolyzer for the detection of bacillus anthracis spores. J Anal Appl Pyrolysis 72: 55–61CrossRefGoogle Scholar
  29. 29.
    Huang S-s, Chen D, Pelczar PL, Vepachedu VR, Setlow P, Li Y-q (2007) Levels of Ca2+-dipicolinic acid in individual Bacillus spores determined using microfluidic Raman tweezers. J Bacteriol 189:4681–4687CrossRefGoogle Scholar
  30. 30.
    Jackson SN, Murray KK (2002) Matrix addition by condensation for matrix-assisted laser desorption/ionization of collected aerosol particles. Anal Chem 74:4841–4844CrossRefGoogle Scholar
  31. 31.
    Jackson SN, Mishra S, Murray KK (2004) On-line laser desorption/ionization mass spectrometry of matrix-coated aerosols. Rapid Commun Mass Spectrom 18:2041–2045CrossRefGoogle Scholar
  32. 32.
    Kaufmann AF, Meltzer MI, Schmid GP (1997) The economic impact of a bioterrorist attack: are prevention and postattack intervention programs justifiable? Emerg Infect Diseases 3:83–94CrossRefGoogle Scholar
  33. 33.
    Kim J-K, Jackson SN, Murray KK (2005) Matrix-assisted laser desorption/ionization mass spectrometry of collected bioaerosol particles. Rapid Commun Mass Spectrom 19:1725–1729Google Scholar
  34. 34.
    Kleefsman I, Stowers MA, Verhrijen PJT, van Wuijckhuijse AL, Kientz Ch E, Marijnissen JCM (2007) Bioaerosol analysis by single particle mass spectrometry. Part Part Syst Charact 24:85–90CrossRefGoogle Scholar
  35. 35.
    Liu D-Y, Rutherford D, Kinsey M, Prather KA (1997) Realtime monitoring of pyrotechnically derived aerosol particles in the troposphere. Anal Chem 69:1808–1814CrossRefGoogle Scholar
  36. 36.
    Liu H, Lin D, Yates III JR (2002) Multidimensional separations for protein/peptide analysis in the post-genomic era. BioTechniques 32: 898–911Google Scholar
  37. 37.
    Lau APS, Lee AKY, Chan CK, Fang M (2006) Ergosterol as a biomarker for the quantification of the fungi biomass in atmospheric aerosols. Atmospheric Environ 40:249–259CrossRefGoogle Scholar
  38. 38.
    Mansoori BA, Johnston MV, Wexler AS (1996) Matrix-assisted laser desorption/ionization of size- and composition-selected aerosol particles. Anal Chem 68:3595–2601CrossRefGoogle Scholar
  39. 39.
    Meuzelaar HLC, Windig W, Harper AM, Huff SM, McClennen WH, Richards JM (1984) Pyrolysis mass spectrometry of complex organic materials. Nature 226: 268–274Google Scholar
  40. 39.
    Meuzelaar HLC, Windig W, Harper AM, Huff SM, McClennen WH, Richards JM (1984) Pyrolysis mass spectrometry of complex organic materials. Nature 226: 268–274Google Scholar
  41. 40.
    Murray KK, Lewis TM, Beeson MD, Russell DH (1994) Aerosol matrix-assisted laser desorption ionization for liquid chromatography time-of-flight mass spectrometry. Anal Chem 66:1601–1609CrossRefGoogle Scholar
  42. 41.
     Murray KK, Russell DH (1994a) Aerosol matrix-assisted laser desorption ionization mass spectrometry. J Am Soc Mass Spectrom 5:1–9CrossRefGoogle Scholar
  43. 42.
    Murray KK, Russell DH (1994b) Liquid sample introduction for matrix-assisted laser desorption ionization. Anal Chem 65:2534–2537CrossRefGoogle Scholar
  44. 43.
    Pashynska V, Vermeylen R, Vas G, Maenhaut W, Claeys M (2002) Development of a gas chromatographic/ion trap mass spectrometric method for the determination of levoglucosan and saccharidic compounds in atmospheric aerosols. Applications to urban aerosols. J Mass Spectrom 37:1249–1257CrossRefGoogle Scholar
  45. 44.
     Ramponi AJ, Chang JT, Langlois RG, Estacio PL, Hadley RT, Frank M, Gard EE (2004) Reagentless detection and classification of individual bioaerosol particles in second. Anal Chem 7:373–378Google Scholar
  46. 45.
    Russell SC, Czerwieniec G, Lebrilla C, Tobias H, Fergenson DP, Steele P, Pitesky M, Horn J, Srivastava A, Frank M, Gard EE (2004) Toward understanding the ionization of biomarkers from micrometer particles by bio-aerosol mass spectrometry. J Am Soc Mass Spectrom 15:900–909CrossRefGoogle Scholar
  47. 46.
    Russell SC, Czerwieniec G, Lebrilla C, Steele P, Riot V, Coffee K, Frank M, Gard EE (2005) Achieving high detection sensitivity (14 zmol) of biomolecular ions in bioaerosol mass spectrometry. Anal Chem 77:4734–4741CrossRefGoogle Scholar
  48. 47.
    Sebastian A, Larsson L (2003) Characterization of the microbial community in indoor environments: a chemical-analytical approach. Appl Environ Microbiol 69:3103–3109CrossRefGoogle Scholar
  49. 48.
    Setlow P J (2006) Spores of Bacillus subtilis: their resistance to radiation, heat and chemicals. Appl Microbiol 101:514–525CrossRefGoogle Scholar
  50. 49.
    Shahgholi M, Ohorodnik S, Callahan JH, Fox A (1997) Trace detection of underivatized muramic acid in environmental dust samples by microcolumn liquid chromatography-electrospray tandem mass spectrometry. Anal Chem 69:1956–1980CrossRefGoogle Scholar
  51. 50.
    Silva PJ, Prather KA (1997) On-line characterization of individual particles from automobile emissions. Environ Sci Technol 31:3074–3080CrossRefGoogle Scholar
  52. 51.
    Sinha MP, Giffen CE, Norris DD, Estes TJ, Vilker VL, Friedlander SK (1982) Particle analysis by mass spectrometry. J Colloid Interface Sci 87:140–153Google Scholar
  53. 52.
    Sinha MP, Platz RM, Vilker VL, Friedlander SK (1984) Analysis of individual biological particles by mass spectrometry. Intl J Mass Spectrom Ion Processes 57:125–133CrossRefGoogle Scholar
  54. 53.
    Sinha MP, Platz RM, Friedlander SK, Vilker VL (1985) Characterization of bacteria by particle beam mass spectrometry. Appl Environ Microbiol 49:1366–1375Google Scholar
  55. 54.
    Smedje G, Norback D (2001) Incidence of asthma diagnosis and self-reported allergy in relation to the school environment: A four-year follow-up study in schoolchildren. Intl J Tuberculosis Lung Dis. 5:1059–1066Google Scholar
  56. 55.
    Smith PB, Snyder AP (1993) Characterization of bacteria by oxidative and non-oxidative pyrolysis-gas chromatography/ion trap mass spectrometry. J Anal Appl Pyrolysis 24: 199–210CrossRefGoogle Scholar
  57. 56.
    Snyder AP, Eiceman GA, Windig W (1988) Influence of pyrolytic techniques on mass spectra of biopolymers with chemical ionization at atmospheric pressure. J Anal Appl Pyrolysis 13: 243–257CrossRefGoogle Scholar
  58. 57.
    Spurny KR (1994) On the chemical detection of bioaerosols. J Aerosol Sci 25:1533–1547CrossRefGoogle Scholar
  59. 58.
    Srivastava A, Pitesky ME, Steele PT, Tobias HJ, Fergenson DP, Horn JM, Russell SC, Czerwieniec GA, Lebrilla CB, Gard EE, Frank RM (2005) Comprehensive assignment of mass spectral signatures from individual Bacillus atrophaeus spores in matrix-free laser desorption/ionization bioaerosol mass spectrometry. Anal Chem 77:3315–3332CrossRefGoogle Scholar
  60. 59.
    Steele PT, Tobias HJ, Fergenson DP, Pitesky ME, Horn JM, Czerwieniec GA, Russell SC, LeBrilla CB, Gard EE, Frank M (2003) Laser power dependence of mass spectral signatures from individual bacterial spores in bioaerosol mass spectrometry. Anal Chem 75:5480–5487CrossRefGoogle Scholar
  61. 60.
    Steele PT, Srivastava A, Pitesky ME, Fergenson DP, Tobias HJ, Gard EE, Frank M (2005) Desorption/ionization fluence thresholds and improved mass spectral consistency measured using a flattop laser profile in the bioaerosol mass spectrometry of single Bacillus endospores. Anal Chem 77:7448–7454CrossRefGoogle Scholar
  62. 61.
    Steele PT, Farquar GR, Martin AN, Coffee KR, Riot VJ, Martin SI, Fergenson DP, Gard EE, Frank M (2008) Autonomous, broad-spectrum detection of hazardous aerosols in seconds. Anal Chem 80:4583–4589CrossRefGoogle Scholar
  63. 62.
    Stowers MA, van Wuijckhuijse AL, Scarlett B, van Baar BLM, Klentz Ch E (2000) Application of matrix-assisted laser desorption ionization to on-line aerosol time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 14:829–833CrossRefGoogle Scholar
  64. 63.
    Su Y, Sipin MF, Furutani H, Prather KA (2004) Development and characterization of an aerosol time- of-flight mass spectrometer with increased detection efficiency. Anal Chem 76:712–719CrossRefGoogle Scholar
  65. 64.
    Szponar B, Larsson L (2001) Use of mass spectrometry for characterizing microbial communities in bioaerosols. Ann Agric Environ Med 8:111–117Google Scholar
  66. 65.
    van Wuijckhuijse AL, Stowers MA, Kleefsman WA, van Baar BLM, Kientz Ch E, Marijnissen JCM (2005) Matrix-assisted laser desorption/ionisation aerosol time-of-flight mass spectrometry for the analysis of bioaerosols: development of a fast detector for airborne biological pathogens. J Aerosol Sci 36:677–687Google Scholar
  67. 66.
    Voorhees KJ, Harrington PB, Street TE, Hoffman S, Durfee SL, Bonelli JE, Firnhaber CS (1990) Approached to pyrolysis/mass spectrometry data analysis of biological materials. In: Meuzelaar HLC (ed) Computer-enhanced analytical spectroscopy. Modern analytical chemistry, vol 2. Plenum Press, New York, pp 259–275CrossRefGoogle Scholar
  68. 67.
    Wilson KR, Jimenez-Cruz M, Nicolas C, Belau L, Leone SR, Ahmed M (2006) Thermal vaporization of biological nanoparticles: Fragment-free vacuum ultraviolet photoionization mass spectra of tryptophan, phenylalanine-glycine-glycine, and beta-carotene. J Phys Chem A 110:2106–2113CrossRefGoogle Scholar
  69. 68.
    Windig W, Jakab E, Richards JM, Meuzelaar HLC (1987) Self-modeling curve resolution by factor analysis of a continuous series of pyrolysis mass spectra. Anal Chem 59: 317–323CrossRefGoogle Scholar
  70. 69.
    Yates III JR (1998) Mass spectrometry and the age of the proteome. J Mass Spectrom 33: 1–19CrossRefGoogle Scholar
  71. 70.
    Yates III JR (2004) Mass spectral analysis in proteomics. Annu Rev Biophys Biomed Struct 33: 297–316CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2014

Authors and Affiliations

  • Rabih E. Jabbour
    • 1
    Email author
  • Samir V. Deshpande
    • 2
  • A. Peter Snyder
    • 1
  • Mary M. Wade
    • 1
  1. 1.U.S. Army Edgewood Chemical Biological CenterAberdeen Proving GroundUSA
  2. 2.Science and Technology CorporationEdgewoodUSA

Personalised recommendations