Bioaerosol Detection with Fluorescence Spectroscopy

  • Per JonssonEmail author
  • Fredrik Kullander
Part of the Integrated Analytical Systems book series (ANASYS)


A brief introduction to the fundamental theory of fluorescence spectroscopy applied to bioaerosol detection is given and developed systems are described. Bioaerosol detection relies on the fact that many relevant microorganisms contain molecules such as aromatic amino acids and reduced nicotinamide adenine dinucleotide (NADH) with characteristic fluorescence when excited by ultraviolet (UV) radiation. Several bioaerosol detection systems based on fluorescence have been developed and tested during the last two decades. They have proven to be very sensitive with a short response time. The main drawback of fluorescence is the relatively low specificity. There are ways to increase the classification capability by utilizing multiple wavelengths, spectral and temporal detection of the emission. Some of the design considerations are presented, including choices of excitation sources and detectors. This chapter is concluded with an outlook for the future.


Elastic Scattering Flavin Adenine Dinucleotide Flavin Adenine Dinucleotide Defense Advance Research Project Agency Army Research Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schäfer FP (1973) 1. Principles of dye laser operation. In: Schäfer FP (ed) Dye Lasers. Topics in Applied Physics, vol 1. Springer, Berlin, pp 1–89. doi:10.1007/3-540-51558-5_7Google Scholar
  2. 2.
    Measures RM (1984) Laser Remote Sensing: Fundamentals and Applications. John Wiley & Sons, New YorkGoogle Scholar
  3. 3.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy. 2 edn. Kluwer Academic/Plenum Publisher, New YorkCrossRefGoogle Scholar
  4. 4.
    Alimova A, Katz A, Savage HE, Shah M, Minko G, Will DV, Rosen RB, McCormick SA, Alfano RR (2003) Native fluorescence and excitation spectroscopic changes in Bacillus subtilis and Staphylococcus aureus bacteria subjected to conditions of starvation. Appl Opt 42 (19):4080–4087. doi:10.1364/AO.42.004080CrossRefGoogle Scholar
  5. 5.
    Faris GW, Copeland RA, Mortelmans K, Bronk BV (1997) Spectrally resolved absolute fluorescence cross sections for bacillus spores. Appl Opt 36 (4):958–967. doi:10.1364/AO.36.000958CrossRefGoogle Scholar
  6. 6.
    Seaver M, Roselle DC, Pinto JF, Eversole JD (1998) Absolute emission spectra from Bacillus subtilis and Escherichia coli vegetative cells in solution. Appl Opt 37 (22):5344–5347. doi:10.1364/AO.37.005344CrossRefGoogle Scholar
  7. 7.
    Cheng YS, Barr EB, Fan BJ, Hargis J, P. J., Rader DJ, O’Hern TJ, Torczynski JR, Tisone GC, Preppernau BL, Young SA, Radloff RJ (1999) Detection of Bioaerosols Using Multiwavelength UV Fluorescence Spectroscopy. Aerosol Sci Technol 30 (2):186–201. doi:10.1080/027868299304778CrossRefGoogle Scholar
  8. 8.
    Hill SC, Pinnick RG, Niles S, Fell Jr. NF, Pan Y-L, Bottiger J, Bronk BV, Holler S, Chang RK (2001) Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity. Appl Opt 40 (18):3005–3013. doi:10.1364/AO.40.003005CrossRefGoogle Scholar
  9. 9.
    Weichert R, Klemm W, Legenhausen K, Pawellek C (2002) Determination of fluorescence cross-sections of biological aerosols. Part Part Syst Charact 19 (3):216-222. doi:10.1002/1521-4117(200207)19:3<216::AID-PPSC216>3.0.CO;2-SGoogle Scholar
  10. 10.
    Sivaprakasam V, Huston AL, Scotto C, Eversole JD (2004) Multiple UV wavelength excitation and fluorescence of bioaerosols. Opt Express 12 (19):4457–4466. doi:10.1364/OPEX.12.004457CrossRefGoogle Scholar
  11. 11.
    Kunnil J, Sarasanandarajah S, Chacko E, Reinisch L (2005) Fluorescence quantum efficiency of dry Bacillus globigii spores. Opt Express 13 (22):8969–8979. doi:10.1364/OPEX.13.008969CrossRefGoogle Scholar
  12. 12.
    Manninen A, Putkiranta M, Saarela J, Rostedt A, Sorvajarvi T, Toivonen J, Marjamaki M, Keskinen J, Hernberg R (2009) Fluorescence cross sections of bioaerosols and suspended biological agents. Appl Opt 48 (22):4320–4328. doi:10.1364/AO.48.004320CrossRefGoogle Scholar
  13. 13.
    Kopczynski K, Kwasny M, Mierczyk Z, Zawadzki Z (2005) Laser induced fluorescence system for detection of biological agents: European project FABIOLA. Proc SPIE 5954:595405.1–12. doi:10.1117/12.623013Google Scholar
  14. 14.
    Wlodarski M, Kaliszewski M, Kwasny M, Kopczynski K, Zawadzki Z, Mierczyk Z, Mlynczak J, Trafny E, Szpakowska M (2006) Fluorescence excitation-emission matrices of selected biological materials. Proc SPIE 6398:639806.1–12. doi:10.1117/12.687872CrossRefGoogle Scholar
  15. 15.
    Pan Y-L, Eversole J, Kaye P, Foot V, Pinnick R, Hill S, Mayo M, Bottiger J, Huston A, Sivaprakasam V, Chang R (2007) Bio-Aerosol Fluorescence. In: Hoekstra A, Maltsev V, Videen G (eds) Optics of Biological Particles. NATO Science Series, vol 238. Springer Netherlands, Dordrecht, pp 63–164. doi:10.1007/978-1-4020-5502-7_4CrossRefGoogle Scholar
  16. 16.
    Hill SC, Mayo MW, Chang RK (2009) Fluorescence of Bacteria, Pollens, and Naturally Occurring Airborne Particles: Excitation/Emission Spectra. ARL-TR-4722. U.S. Army Research Laboratory, Adelphi, MD, USAGoogle Scholar
  17. 17.
    Kaye PH, Stanley WR, Hirst E, Foot EV, Baxter KL, Barrington SJ (2005) Single particle multichannel bio-aerosol fluorescence sensor. Opt Express 13 (10):3583–3593. doi:10.1364/OPEX.13.003583CrossRefGoogle Scholar
  18. 18.
    Huang HC, Pan Y-L, Hill SC, Pinnick RG, Chang RK (2008) Real-time measurement of dual-wavelength laser-induced fluorescence spectra of individual aerosol particles. Opt Express 16 (21):16523–16528. doi:10.1364/OE.16.016523CrossRefGoogle Scholar
  19. 19.
    Feugnet G, Lallier E, Grisard A, McIntosh L, Hellström JE, Jelger P, Laurell F, Albano C, Kaliszewski M, Wlodarski M, Mlynczak J, Kwasny M, Zawadzki Z, Mierczyk Z, Kopczynski K, Rostedt A, Putkiranta M, Marjamaki M, Keskinen J, Enroth J, Janka K, Reinivaara R, Holma L, Humppi T, Battistelli E, Iliakis E, Gerolimos G (2008) Improved laser-induced fluorescence method for bio-attack early warning detection system. Proc SPIE 7116:71160C.1–11. doi:10.1117/12.799151Google Scholar
  20. 20.
    Huang HC, Pan Y-L, Hill SC, Pinnick RG (2010) Fluorescence-Based Classification with Selective Collection and Identification of Individual Airborne Bioaerosol Particles. In: Serpengüzel A, Poon AW (eds) Optical Processes In Microparticles And Nanostructures, A Festschrift dedicated to Richard Kounai Chang on his Retirement from Yale University. Advanced Series in Applied Physics, vol 6. World Scientific, Singapore, pp 153–167. doi:10.1142/9789814295789_0009CrossRefGoogle Scholar
  21. 21.
    Jonsson P, Kullander F, Vahlberg C, Jelger P, Tiihonen M, Wästerby P, Tjärnhage T, Lindgren M (2006) Spectral detection of ultraviolet laser induced fluorescence from individual bioaerosol particles. Proc SPIE 6398:63980F.1–12. doi:10.1117/12.689666Google Scholar
  22. 22.
    Simard J-R, Roy G, Mathieu P, Larochelle V, McFee J, Ho J (2004) Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence. IEEE Trans Geosci Remote Sens 42 (4):865–874. doi:10.1109/TGRS.2003.823285CrossRefGoogle Scholar
  23. 23.
    Baxter K, Castle M, Barrington S, Withers P, Foot V, Pickering A, Felton N (2007) UK small scale UVLIF lidar for stand-off BW detection. Proc SPIE 6739:67390Z.1–10. doi:10.1117/12.737730Google Scholar
  24. 24.
    Jonsson P, Elmqvist M, Gustafsson O, Kullander F, Persson R, Olofsson G, Tjärnhage T, Farsund Ø, Haavardsholm TV, Rustad G (2009) Evaluation of biological aerosol stand-off detection at a field trial. Proc SPIE 7484:74840I.1–14. doi:10.1117/12.830401Google Scholar
  25. 25.
    Farsund Ø, Rustad G, Kaasen I, Haavardsholm TV (2010) Required Spectral Resolution for Bioaerosol Detection Algorithms Using Standoff Laser-Induced Fluorescence Measurements. IEEE Sens J 10 (3):655–661. doi:10.1109/JSEN.2009.2037794CrossRefGoogle Scholar
  26. 26.
    Hill SC, Pinnick RG, Niles S, Pan Y-L, Holler S, Chang RK, Bottiger J, Chen BT, Orr C-S, Feather G (1999) Real-time measurement of fluorescence spectra from single airborne biological particles. Field Anal Chem Technol 3 (4-5):221–239. doi:10.1002/(SICI)1520-6521(1999)3:4/5<221::AID-FACT2>3.0.CO;2-7Google Scholar
  27. 27.
    Pinnick RG, Hill SC, Pan Y-L, Chang RK (2004) Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: Measurement and classification of single particles containing organic carbon. Atmos Environ 38 (11):1657–1672. doi:10.1016/j.atmosenv.2003.11.017CrossRefGoogle Scholar
  28. 28.
    Pan Y-L, Pinnick RG, Hill SC, Rosen JM, Chang RK (2007) Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico. J Geophys Res 112 (D24):D24S19.1–15. doi:10.1029/2007jd008741Google Scholar
  29. 29.
    Jonsson P, Kullander F, Vahlberg C, Wästerby P, Tjärnhage T, Olofsson G, Lindgren M, Tiihonen M, Jelger P (2007) Ultraviolet optical techniques for early-warning detection of biological threats. In: The Proceedings of 9th International Symposium on Protection against Chemical and Biological Warfare Agents, Gothenburg, Sweden, 22–25 May 2007. Umeå, p 6Google Scholar
  30. 30.
    Farsund Ø, Rustad G, Skogan G (2012) Standoff detection of biological agents using laser induced fluorescence-comparison of 294 nm and 355 nm excitation wavelengths. Biomed Opt Express 3 (11):2964–2975. doi:10.1364/BOE.3.002964CrossRefGoogle Scholar
  31. 31.
    DeFreez R (2009) LIF bio-aerosol threat triggers: then and now. Proc SPIE 7484:74840H.1–15. doi:10.1117/12.835088Google Scholar
  32. 32.
    Buteau S, Simard J-R, Dery B, Roy G, Lahaie P, Mathieu P, Ho J, McFee J (2006) Bioaerosols laser-induced fluorescence provides specific robust signatures for standoff detection. Proc SPIE 6378:637813/1–12. doi:10.1117/12.686010Google Scholar
  33. 33.
    Bronk BV, Reinisch L (1993) Variability of Steady-State Bacterial Fluorescence with Respect to Growth Conditions. Appl Spectrosc 47 (4):436–440CrossRefGoogle Scholar
  34. 34.
    Campbell SD, Tremblay DP, Daver F, Cousins D (2005) Wavelength comparison study for bioaerosol detection. Proc SPIE 5778:130–138. doi:10.1117/12.610998CrossRefGoogle Scholar
  35. 35.
    Heaton HI (2005) Principal-components analysis of fluorescence cross-section spectra from pathogenic and simulant bacteria. Appl Opt 44 (30):6486–6495. doi:10.1364/AO.44.006486CrossRefGoogle Scholar
  36. 36.
    Kunnil J, Sarasanandarajah S, Chacko E, Reinisch L (2006) Effect of washing on identification of Bacillus spores by principal-component analysis of fluorescence data. Appl Opt 45 (15):3659–3664. doi:10.1364/AO.45.003659CrossRefGoogle Scholar
  37. 37.
    Laflamme C, Simard J-R, Buteau S, Lahaie P, Nadeau D, Déry B, Houle O, Mathieu P, Roy G, Ho J, Duchaine C (2011) Effect of growth media and washing on the spectral signatures of aerosolized biological simulants. Appl Opt 50 (6):788–796. doi:10.1364/AO.50.000788CrossRefGoogle Scholar
  38. 38.
    Sarasanandarajah S, Kunnil J, Chacko E, Bronk BV, Reinisch L (2005) Reversible changes in fluorescence of bacterial endospores found in aerosols due to hydration/drying. J Aerosol Sci 36 (5-6):689–699. doi:10.1016/j.jaerosci.2004.11.010CrossRefGoogle Scholar
  39. 39.
    Santarpia JL, Pan Y-L, Hill SC, Baker N, Cottrell B, McKee L, Ratnesar-Shumate S, Pinnick RG (2012) Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging. Opt Express 20 (28):29867–29881. doi:10.1364/OE.20.029867CrossRefGoogle Scholar
  40. 40.
    Dalterio RA, Nelson WH, Britt D, Sperry J, Psaras D, Tanguay JF, Suib SL (1986) Steady-State and Decay Characteristics of Protein Tryptophan Fluorescence from Bacteria. Appl Spectrosc 40 (1):86–90CrossRefGoogle Scholar
  41. 41.
    Dalterio RA, Nelson WH, Britt D, Sperry JF, Tanguay JF, Suib SL (1987) The Steady-State and Decay Characteristics of Primary Fluorescence From Live Bacteria. Appl Spectrosc 41 (2):234–241CrossRefGoogle Scholar
  42. 42.
    Jonsson P, Kullander F, Nordstrand M, Tjärnhage T, Wästerby P, Lindgren M (2004) Development of fluorescence-based point detector for biological sensing. Proc SPIE 5617:60–74. doi:10.1117/12.578231Google Scholar
  43. 43.
    Katz A, Alimova A, Siddique M, Savage HE, Shah M, Rosen RB, Alfano RR (2004) Time-resolved and steady-state fluorescence spectroscopy from bacteria subjected to bactericidal agents. Proc SPIE 5269:217–220. doi:10.1117/12.518656Google Scholar
  44. 44.
    Vitta P, Kurilcik N, Jursenas S, Zukauskas A, Bakiene E, Zhang J, Katona T, Bilenko Y, Lunev A, Hu X, Deng J, Gaska R (2005) Fluorescence-lifetime identification of biological agents using deep ultraviolet light-emitting diodes. Proc SPIE 5990:59900X.1–12. doi:10.1117/12.630573Google Scholar
  45. 45.
    Jeys TH, Herzog WD, Hybl JD, Czerwinski RN, Sanchez A (2007) Advanced Trigger Development. Linc Lab J 17 (1):29–62Google Scholar
  46. 46.
    Greenwood DP, Jeys TH, Johnson B, Richardson JM, Shatz MP (2009) Optical techniques for detecting and identifying biological-warfare agents. Proc IEEE 97 (6):971–989. doi:10.1109/JProc2009.2013564CrossRefGoogle Scholar
  47. 47.
    Ho J (2002) Future of biological aerosol detection. Anal Chim Acta 457 (1):125–148. doi:10.1016/S0003-2670(01)01592-6CrossRefGoogle Scholar
  48. 48.
  49. 49.
    Hairston PP, Ho J, Quant FR (1997) Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence. J Aerosol Sci 28 (3):471–482. doi:10.1016/s0021-8502(96)00448-xCrossRefGoogle Scholar
  50. 50.
    Ho J, Spence M, Hairston P (1999) Measurement of biological aerosol with a fluorescent aerodynamic particle sizer (FLAPS): correlation of optical data with biological data. Aerobiol 15 (4):281–291. doi:10.1023/A:1007647522397CrossRefGoogle Scholar
  51. 51.
    UV-APS. Accessed 31 April 2013
  52. 52.
    FLAPS III. Accessed 31 April 2013
  53. 53.
  54. 54.
    Lynch EJ, Bogucki MI, Gardner PJ, Hyttinen L (2005) Biological agent warning sensor (BAWS): laser-induced fluorescence as the joint biological point detection system trigger. Proc SPIE 5795:75–78. doi:10.1117/12.609918Google Scholar
  55. 55.
    Reyes FL, Jeys TH, Newbury NR, Primmerman CA, Rowe GS, Sanchez A (1999) Bio-aerosol fluorescence sensor. Field Anal Chem Technol 3 (4–5):240–248. doi:10.1002/(SICI)1520-6521(1999)3:4/5%3C240::AID-FACT3%3E3.0.CO;2-%23Google Scholar
  56. 56.
    Primmerman CA (2000) Detection of biological agents. Linc Lab J 12 (1):3–32Google Scholar
  57. 57.
    Luoma G, Cherrier P, Zheng C, Piccioni M, Wong A (2001) Development of a novel biological agent real time sensor (PS-BARTS) based on fluorescence particle sizing. In: Proceedings of the 7th International Symposium on Protection against Chemical and Biological Warfare Agents, Stockholm, Sweden, 15–19 June 2001. FOI, Umeå, p 12Google Scholar
  58. 58.
    Luoma G, Cherrier PP, Piccioni M, Tanton C, Herz S, DeFreez RK, Potter M, Girvin KL, Whitney R (2002) A fluorescence particle detector for real time quantification of viable organisms in air. Proc SPIE 4576:32–39. doi:10.1117/12.456967Google Scholar
  59. 59.
    Retfalvi LA, Newman E, Boryski M, Kacelenga R (2004) The challenges of effective biological agent detection in homeland security applications. In: The proceedings of the 8th International Symposium on Protection against Chemical and Biological Warfare Agents, Gothenburg, Sweden, 2–6 June 2004. FOI, Umeå, p 17Google Scholar
  60. 60.
    Mudigonda NR, Kacelenga R (2006) Biological agent detection based on principal component analysis. Proc SPIE 6218:62180P.1–9. doi:10.1117/12.669522Google Scholar
  61. 61.
    Wilson GA, DeFreez RK (2004) Multispectral diode laser induced fluorescence biological particle sensor. Proc SPIE 5617:46–52. doi:10.1117/12.578854Google Scholar
  62. 62.
    Campbell SD, Jeys TH, Eapen XL (2007) Bioaerosol optical sensor model development and initial validation. Proc SPIE 6538:65380P.1–9. doi:10.1117/12.717075Google Scholar
  63. 63.
    Cabalo J, DeLucia M, Goad A, Lacis J, Narayanan F, Sickenberger D (2008) Overview of the TAC-BIO detector. Proc SPIE 7116:71160D.1–11. doi:10.1117/12.799843Google Scholar
  64. 64.
    Hill SC, Pinnick RG, Nachman P, Chen G, Chang RK, Mayo MW, Fernandez GL (1995) Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles. Appl Opt 34 (30):7149–7155. doi:10.1364/AO.34.007149CrossRefGoogle Scholar
  65. 65.
    Chen G, Nachman P, Pinnick RG, Hill SC, Chang RK (1996) Conditional-firing aerosol-fluorescence spectrum analyzer for individual airborne particles with pulsed 266-nm laser excitation. Opt Lett 21 (16):1307–1309. doi:10.1364/OL.21.001307CrossRefGoogle Scholar
  66. 66.
    Pan Y-L, Holler S, Chang RK, Hill SC, Pinnick RG, Niles S, Bottiger JR (1999) Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser. Opt Lett 24 (2):116–118. doi:10.1364/OL.24.000116CrossRefGoogle Scholar
  67. 67.
    Pan YL, Pinnick RG, Hill SC, Niles S, Holler S, Bottiger JR, Wolf JP, Chang RK (2001) Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles. Appl Phys B 72 (4):449–454. doi:10.1007/s003400100532CrossRefGoogle Scholar
  68. 68.
    Hill SC, Pinnick RG, Niles S, Fell Jr NF, Pan Y-L, Bottiger J, Bronk BV, Holler S, Chang RK (2002) Fluorescence from airborne microparticles: Dependence on size, concentration of fluorophores, and illumination intensity - Erratum. Appl Opt 41 (21):4432. doi:10.1364/AO.41.004432CrossRefGoogle Scholar
  69. 69.
    Pan Y-L, Hill SC, Wolf JP, Holler S, Chang RK, Bottiger JR (2002) Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan. Appl Opt 41 (15):2994–2999. doi:10.1364/AO.41.002994CrossRefGoogle Scholar
  70. 70.
    Pan Y-L, Hartings J, Pinnick RG, Hill SC, Halverson J, Chang RK (2003) Single-particle fluorescence spectrometer for ambient aerosols. Aerosol Sci Technol 37 (8):628–639. doi:10.1080/02786820390195433CrossRefGoogle Scholar
  71. 71.
    Pan Y-L, Pinnick RG, Hill SC, Huang H, Chang RK (2008) Dual-wavelength-excitation single-particle fluorescence spectrometer/particle sorter for real-time measurement of organic carbon and biological aerosols. Proc SPIE 7116:71160J.1–8. doi:10.1117/12.801774Google Scholar
  72. 72.
    Pan YL, Cobler P, Rhodes S, Potter A, Chou T, Holler S, Chang RK, Pinnick RG, Wolf JP (2001) High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector. Rev Sci Instrum 72 (3):1831–1836. doi:10.1063/1.1344179CrossRefGoogle Scholar
  73. 73.
    Pan Y-L, Hill SC, Pinnick RG, Huang H, Bottiger JR, Chang RK (2010) Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results. Opt Express 18 (12):12436–12457. doi:10.1364/OE.18.012436CrossRefGoogle Scholar
  74. 74.
    Pan Y-L, Hill SC, Pinnick RG, House JM, Flagan RC, Chang RK (2011) Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles. Atmos Environ 45 (8):1555–1563. doi:10.1016/j.atmosenv.2010.12.042CrossRefGoogle Scholar
  75. 75.
    Pan Y-L, Pinnick RG, Hill SC, Chang RK (2009) Particle-Fluorescence Spectrometer for Real-Time Single-Particle Measurements of Atmospheric Organic Carbon and Biological Aerosol. Environ Sci Technol 43 (2):429–434. doi:10.1021/es801544yCrossRefGoogle Scholar
  76. 76.
    Pan Y-L, Boutou V, Chang RK, Ozden I, Davitt K, Nurmikko AV (2003) Application of light-emitting diodes for aerosol fluorescence detection. Opt Lett 28 (18):1707–1709. doi:10.1364/OL.28.001707CrossRefGoogle Scholar
  77. 77.
    Davitt K, Song YK, Nurmikko AV, Jeon SR, Gherasimova M, Han J, Pan YL, Chang RK (2005) UV LED arrays for spectroscopic fingerprinting of airborne biological particles. Phys Status Solidi C 2 (7):2878–2881. doi:10.1002/pssc.200461591Google Scholar
  78. 78.
    Davitt K, Yoon-Kyu S, Patterson WR, III, Nurmikko AV, Gherasimova M, Jung H, Pan Y-L, Chang RK (2005) 290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles. Opt Express 13 (23):9548–9555. doi:10.1364/OPEX.13.009548CrossRefGoogle Scholar
  79. 79.
    Pan Y-L, Boutou V, Bottiger JR, Zhang SS, Wolf J-P, Chang RK (2004) A puff of air sorts bioaerosols for pathogen identification. Aerosol Sci Technol 38 (6):598–602. doi:10.1080/02786820490465450CrossRefGoogle Scholar
  80. 80.
    Holler S (1999) Real-time Airborne Microparticle Characterization: Two-dimensional Angular Optical Scattering (TAOS) and UV Fluorescence Spectroscopy. Ph.D., Yale University, New Haven, CT, USAGoogle Scholar
  81. 81.
    Holler S, Auger JC, Stout B, Pan Y, Bottiger JR, Chang RK, Videen G (2000) Observations and calculations of light scattering from clusters of spheres. Appl Opt 39 (36):6873–6887. doi:10.1364/AO.39.006873CrossRefGoogle Scholar
  82. 82.
    Pan Y-L, Aptowicz KB, Chang RK, Hart M, Eversole JD (2003) Characterizing and monitoring respiratory aerosols by light scattering. Opt Lett 28 (8):589–591. doi:10.1364/OL.28.000589CrossRefGoogle Scholar
  83. 83.
    Holler S, Zomer S, Crosta GF, Pan Y-L, Chang RK, Bottiger JR (2004) Multivariate analysis and classification of two-dimensional angular optical scattering patterns from aggregates. Appl Opt 43 (33):6198–6206. doi:10.1364/AO.43.006198CrossRefGoogle Scholar
  84. 84.
    Fernandes GE, Pan YL, Chang RK, Aptowicz K, Pinnick RG (2006) Simultaneous forward- and backward-hemisphere elastic-light-scattering patterns of respirable-size aerosols. Opt Lett 31 (20):3034–3036. doi:10.1364/OL.31.003034CrossRefGoogle Scholar
  85. 85.
    Sindoni OI, Saija R, Iati MA, Borghese F, Denti P, Fernandes GE, Pan Y-L, Chang RK (2006) Optical scattering by biological aerosols: experimental and computational results on spore simulants. Opt Express 14 (15):6942–6950. doi:10.1364/OE.14.006942CrossRefGoogle Scholar
  86. 86.
    Seaver M, Eversole JD, Hardgrove JJ, Cary WK, Roselle DC (1999) Size and Fluorescence Measurements for Field Detection of Biological Aerosols. Aerosol Sci Technol 30 (2):174–185. doi:10.1080/027868299304769CrossRefGoogle Scholar
  87. 87.
    Eversole JD, Roselle D, Seaver ME (1999) Monitoring biological aerosols using UV fluorescence. Proc SPIE 3533:34–42. doi:10.1117/12.336868Google Scholar
  88. 88.
    Eversole JD, Hardgrove JJ, Cary WK, Choulas DP, Seaver M (1999) Continuous, rapid biological aerosol detection with the use of UV fluorescence: Outdoor test results. Field Anal Chem Technol 3 (4–5):249–259. doi:10.1002/(SICI)1520-6521(1999)3:4/5<249::AID-FACT4>3.0.CO;2-OGoogle Scholar
  89. 89.
    Eversole JD, Cary Jr. WK, Scotto CS, Pierson R, Spence M, Campillo AJ (2001) Continuous bioaerosol monitoring using UV excitation fluorescence: Outdoor test results. Field Anal Chem Technol 5 (4):205–212. doi:10.1002/fact.1022Google Scholar
  90. 90.
    Eversole JD, Scotto CS, Spence M, Campillo AJ (2003) Continuous bioaerosol monitoring using UV excitation fluorescence. Proc SPIE 4829:532–533. doi:10.1117/12.525515Google Scholar
  91. 91.
    Birenzvige A, Eversole J, Seaver M, Francesconi S, Valdes E, Kulaga H (2003) Aerosol characteristics in a subway environment. Aerosol Sci Technol 37 (3):210–220. doi:10.1080/02786820300941CrossRefGoogle Scholar
  92. 92.
    Sivaprakasam V, Huston AL, Scotto C, Eversole JD (2004) Multiple UV wavelength excitation and fluorescence of bioaerosols. Proc SPIE 5585:71–78. doi:10.1117/12.571296Google Scholar
  93. 93.
    Eversole JD, Sivaprakasam V, Pletcher TA, Keller D (2008) Single aerosol particle selection and capture using laser scattering and fluorescence. Proc SPIE 7116:71160F.1–11. doi:10.1117/12.799890Google Scholar
  94. 94.
    Sivaprakasam V, Pletcher T, Tucker JE, Huston AL, McGinn J, Keller D, Eversole JD (2009) Classification and selective collection of individual aerosol particles using laser-induced fluorescence. Appl Opt 48 (4):B126–B136. doi:10.1364/AO.48.00B126CrossRefGoogle Scholar
  95. 95.
    Sivaprakasam V, Lin H-B, Huston AL, Eversole JD (2011) Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements. Opt Express 19 (7):6191–6208. doi:10.1364/OE.19.006191CrossRefGoogle Scholar
  96. 96.
    Sivaprakasam V, Lou JW, Currie M, Eversole JD (2011) Two-photon excited fluorescence from biological aerosol particles. J Quant Spectrosc Radiat Transf 112 (10):1511–1517. doi:10.1016/j.jqsrt.2011.02.010CrossRefGoogle Scholar
  97. 97.
    Hybl JD, Tysk SM, Berry SR, Jordan MP (2006) Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection. Appl Opt 45 (34):8806–8814. doi:10.1364/AO.45.008806CrossRefGoogle Scholar
  98. 98.
    Barton JE, Hirst E, Kaye PH, Clark JM (2000) Simultaneous light scattering and intrinsic fluorescence measurement for bioaerosol detection. J Aerosol Sci 31 (SUPPL 1):S967–S968. doi:10.1016/S0021-8502(00)90977-7Google Scholar
  99. 99.
    Kaye PH, Barton JE, Hirst E, Clark JM (2000) Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles. Appl Opt 39 (21):3738–3745. doi:10.1364/AO.39.003738Google Scholar
  100. 100.
    Hirst E, Kaye PH, Foot V, Clark JM, Withers PB (2004) An instrument for the simultaneous acquisition of size, shape, and spectral fluorescence data from single aerosol particles. Proc SPIE 5617:416–423. doi:10.1117/12.578269Google Scholar
  101. 101.
    Foot VJ, Clark JM, Baxter KL, Close N (2004) Characterising single airborne particles by fluorescence emission and spatial analysis of elastic scattered light. Proc SPIE 5617:292–299. doi:10.1117/12.578198Google Scholar
  102. 102.
    Kaye PH, Hirst E, Foot V, Clark JM, Baxter K (2004) A low-cost multi-channel aerosol fluorescence sensor for networked deployment. Proc SPIE 5617:388–398. doi:10.1117/12.578283Google Scholar
  103. 103.
    Kaye PH, Stanley WR, Foot V, Baxter K, Barrington SJ (2005) A dual-wavelength single particle aerosol fluorescence monitor. Proc SPIE 5990:59900N.1–12. doi:10.1117/12.629868Google Scholar
  104. 104.
    Foot VE, Kaye PH, Stanley WR, Barrington SJ, Gallagher M, Gabey A (2008) Low-cost real-time multi-parameter bio-aerosol sensors. Proc SPIE 7116:711601.1–12. doi:10.1117/12.800226Google Scholar
  105. 105.
    Stanley WR, Kaye PH, Foot VE, Barrington SJ, Gallagher M, Gabey A (2011) Continuous bioaerosol monitoring in a tropical environment using a UV fluorescence particle spectrometer. Atmos Sci Lett 12 (2):195–199. doi:10.1002/asl.310CrossRefGoogle Scholar
  106. 106.
    Gabey AM, Gallagher MW, Whitehead J, Dorsey JR, Kaye PH, Stanley WR (2010) Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual channel fluorescence spectrometer. Atmos Chem Phys 10 (10):4453–4466. doi:10.5194/acp-10-4453-2010CrossRefGoogle Scholar
  107. 107.
    Gabey AM, Stanley WR, Gallagher MW, Kaye PH (2011) The fluorescence properties of aerosol larger than 0.8 μm in urban and tropical rainforest locations. Atmos Chem Phys 11 (11):5491–5504. doi:10.5194/acp-11-5491-2011CrossRefGoogle Scholar
  108. 108.
    Tjärnhage T, Strömqvist M, Olofsson G, Squirrell D, Burke J, Ho J, Spence M (2001) Multivariate data analysis of fluorescence signals from biological aerosols. Field Anal Chem Technol 5 (4):171–176. doi:10.1002/fact.1018Google Scholar
  109. 109.
    Jonsson P, Kullander F, Wästerby P, Tiihonen M, Lindgren M (2005) Detection of fluorescence spectra of individual bioaerosol particles. Proc SPIE 5990:59900M.1–15. doi:10.1117/12.630141Google Scholar
  110. 110.
    Jonsson P, Kullander F, Tiihonen M, Nordstrand M, Tjærnhage T, Wæsterby P, Olofsson G, Lindgren M (2005) Development of fluorescence-based LIDAR technology for biological sensing. Mater Res Soc Symp Proc 883:51–62. doi:10.1557/PROC-883-FF1.6Google Scholar
  111. 111.
    Jonsson P, Kullander F, Vahlberg C, Gustavsson O, Tiihonen M, Jelger P, Wästerby P, Tjärnhage T, Lindgren M (2006) Spectral Detection of Ultraviolet Laser Induced Fluorescence from Dry Biological Particles. In: Proceedings of the 7th Joint Conference on Standoff Detection for Chemical and Biological Defense, Williamsburg, VA, USA, 23–27 October 2006. Williamsburg. p 10Google Scholar
  112. 112.
    Tiihonen M, Pasiskevicius V, Laurell F, Jonsson P, Lindgren M (2004) A compact OPO/SFG laser for ultraviolet biological sensing. Proc SPIE 5332:134–142. doi:10.1117/12.530292Google Scholar
  113. 113.
    Tiihonen M, Pasiskevicius V, Laurell F, Hammarström P, Lindgren M (2004) A UV laser source for biological and chemical sensing. Proc SPIE 5240:127–136. doi:10.1117/12.509641Google Scholar
  114. 114.
    Tiihonen M, Pasiskevicius V, Laurell F, Lindgren M (2004) A novel UV-laser source for fluorescence excitation of proteins. Proc SPIE 5617:261–268. doi:10.1117/12.568436Google Scholar
  115. 115.
    Tiihonen M, Pasiskevicius V, Laurell F (2007) Tailored UV-laser source for fluorescence spectroscopy of biomolecules. Opt Laser Eng 45 (4):444–449. doi:10.1016/j.optlaseng.2005.03.016CrossRefGoogle Scholar
  116. 116.
    Feugnet G, Grisard A, Lallier E, McIntosh L, Hellström J (2008) Advanced double-pulse UV source for laser-induced fluorescence of bioaerosols. Proc SPIE 7116:71160O.1–7. doi:10.1117/12.799143Google Scholar
  117. 117.
    Rostedt A, Putkiranta M, Marjamaki M, Keskinen J, Janka K, Reinivaara R, Holma L (2006) Optical chamber design for aerosol particle fluorescent measurement. Proc SPIE 6398:63980G.1–10. doi:10.1117/12.689803Google Scholar
  118. 118.
    Battistelli E, Paolinetti R, Pompei C, Puccini S (2008) The optical detection system of FABIOLA. Proc SPIE 7116:71160G.1–9. doi:10.1117/12.800131Google Scholar
  119. 119.
    Manninen A, Putkiranta M, Rostedt A, Saarela J, Laurila T, Marjamaki M, Keskinen J, Hernberg R (2008) Instrumentation for measuring fluorescence cross sections from airborne microsized particles. Appl Opt 47 (2):110–115. doi:10.1364/AO.47.000110CrossRefGoogle Scholar
  120. 120.
    Putkiranta M, Manninen A, Rostedt A, Saarela J, Sorvajärvi T, Marjamäki M, Hernberg R, Keskinen J (2010) Fluorescence properties of biochemicals in dry NaCl composite aerosol particles and in solutions. Appl Phys B 99 (4):841–851. doi:10.1007/s00340-010-4073-zCrossRefGoogle Scholar
  121. 121.
    Grun J, Manka CK, Nikitin S, Zabetakis D, Comanescu G, Gillis D, Bowles J (2007) Identification of bacteria from two-dimensional resonant-Raman spectra. Anal Chem 79 (14):5489–5493. doi:10.1021/ac070681hCrossRefGoogle Scholar
  122. 122.
    Bhartia R, Hug WF, Salas BC, Sijapati K, Lane AL, Reid RD, Conrad PG (2006) Biochemical detection and identification false alarm rate dependence on wavelength using laser induced native fluorescence. Proc SPIE 6218:62180J.1–9. doi:10.1117/12.674404Google Scholar
  123. 123.
    Bhartia R, Hug WF, Salas EC, Reid RD, Sijapati KK, Tsapin A, Abbey W, Nealson KH, Lane AL, Conrad PG (2008) Classification of Organic and Biological Materials with Deep Ultraviolet Excitation. Appl Spectrosc 62 (10):1070–1077. doi:10.1366/000370208786049123CrossRefGoogle Scholar
  124. 124.
    Bhartia R, Salas EC, Hug WF, Reid RD, Lane AL, Edwards KJ, Nealson KH (2010) Label-Free Bacterial Imaging with Deep-UV-Laser-Induced Native Fluorescence. Appl Environ Microbiol 76 (21):7231–7237. doi:10.1128/aem.00943-10CrossRefGoogle Scholar
  125. 125.
    Hug WF, Bhartia R, Taspin A, Lane A, Conrad P, Sijapati K, Reid RD (2005) Status of miniature integrated UV resonance fluorescence and Raman sensors for detection and identification of biochemical warfare agents. Proc SPIE 5994:59940J.1–12. doi:10.1117/12.628923Google Scholar
  126. 126.
    Hug WF, Reid RD, Bhartia R, Lane AL (2009) Performance status of a small robot-mounted or hand-held, solar-blind, standoff chemical, biological, and explosives (CBE) sensor. Proc SPIE 7304:73040Z.1–8. doi:10.1117/12.817881Google Scholar
  127. 127.
    Grun J, Bowles J, Gillis D, Kunapareddy P, Lunsford R, Manka CK, Nikitin S, Wang Z (2010) Tunable multi-wavelength resonance-Raman detection of bacteria and chemicals in complex environments. Proc SPIE 7687:768706.1–12. doi:10.1117/12.863209Google Scholar
  128. 128.
    Kunapareddy N, Grun J, Lunsford R, Gillis D, Nikitin S, Wang Z (2012) Multi-wavelength resonance Raman spectroscopy of bacteria to study the effects of growth condition. Proc SPIE 8358:83580B.1–7. doi:10.1117/12.918652Google Scholar
  129. 129.
    Comanescu G, Manka CK, Grun J, Nikitin S, Zabetakis D (2008) Identification of explosives with two-dimensional ultraviolet resonance Raman spectroscopy. Appl Spectrosc 62 (8):833–839CrossRefGoogle Scholar
  130. 130.
  131. 131.
    Shelton MJ, Evans SP, Smith PD, Simpson IA, Kaye PH, Clarke JM (2004) Real-time biological agent detection using particle size, shape and fluorescence characterisation. Proc SPIE 5617:284–291. doi:10.1117/12.573636Google Scholar
  132. 132.
    Clark JM, Shelton MJ, Evans SP, Smith PD, Simpson IA, Kaye PH (2005) A new real-time biological agent characterisation system. Proc SPIE 5990:59900Z.1–8. doi:10.1117/12.634065Google Scholar
  133. 133.
  134. 134.
    IMD. Accessed 28 June 2013
  135. 135.
  136. 136.
    Carrano JC, Jeys T, Cousins D, Eversole J, Gillespie J, Healy D, Licata N, Loerop W, O’Keefe M, Samuels A, Schultz J, Walter M, Wong N, Billotte W, Munley M, Reich E, Roos J (2004) Chemical and biological sensor standards study. Defense Advanced Research Projects Agency, Arlington VA. Available from:
  137. 137.
    Carrano J, Jeys T, Eversole J, Gillespie J, Licata N, Loerop W, Munley M, O’Keefe M, Roos J, Samuels A, Schultz J, Shatz M, Wong N, D’Amico F, Casale AM, Holster SE, McGrath JF, Metrovich A, Murphy C, Nelson-Patel K, Reich E, Riisager T (2010) Chemical and Biological Sensor Standards Study II. Advanced Research Projects Agency and Defense Threat Reduction Agency, Arlington VA. Available from:
  138. 138.
    Kunnil J, Sarasanandarajah S, Chacko E, Swartz B, Reinisch L (2005) Identification of Bacillus spores using clustering of principal components of fluorescence data. Aerosol Sci Technol 39 (9):842–848CrossRefGoogle Scholar
  139. 139.
    Van Wuijckhuijse AL, Stowers MA, Kleefsman WA, Van Baar BLM, Kientz CE, Marijnissen JCM (2005) Matrix-assisted laser desorption/ionisation aerosol time-of-flight mass spectrometry for the analysis of bioaerosols: Development of a fast detector for airborne biological pathogens. J Aerosol Sci 36 (5–6):677–687CrossRefGoogle Scholar
  140. 140.
    Huffman JA, Treutlein B, Pöschl U (2010) Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe. Atmos Chem Phys 10 (7):3215–3233. doi:10.5194/acp-10-3215-2010CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2014

Authors and Affiliations

  1. 1.Division of Sensor and EW SystemsFOI—Swedish Defence Research AgencyLinköpingSweden

Personalised recommendations