Advertisement

Aerosol Sampling and Transport

  • Jorma KeskinenEmail author
  • Marko Marjamäki
Chapter
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

The instruments described in this section aim at detecting biological particles suspended in air. This chapter describes the art and components of sampling the aerosol and transporting the particles to the actual detection unit, while keeping them airborne. Depending on the detection principle, later stages may require transferring the particles into another medium such as a liquid.

Keywords

Settling Velocity Transmission Efficiency Transport Efficiency Stokes Number Detection Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Belyaev SP, Levin LM (1974) Techniques for collecting of representative aerosol samples. J Aerosol Sci 5:325–338CrossRefGoogle Scholar
  2. 2.
    Bergman W, Shinn, Lochner R et al (2005) High air flow, low pressure drop, bio-aerosol collector using a multi-slit virtual impactor. J Aerosol Sci 36:619–638CrossRefGoogle Scholar
  3. 3.
    Brockmann JE (2001) Sampling and Transport of Aerosols. In: Baron PA, Willeke K (ed) Aerosol Measurement: Principles, Techniques, and Applications, 2nd edn. Wiley, New YorkGoogle Scholar
  4. 4.
    Chen BT, Yeh HC (1987) An improved virtual impactor: Design and performance. J Aerosol Sci 18:203–214CrossRefGoogle Scholar
  5. 5.
    Conner WD (1966) An inertial-type particle separator for collecting large samples. JAPCA J Air Waste Ma 16:35–38Google Scholar
  6. 6.
    Davies CN (1968) The entry of aerosols into sampling tubes and heads. Br J Appl Phys (J Phys D: Appl Phys) 1:921–932CrossRefGoogle Scholar
  7. 7.
    Durham MD, Lundgren DA (1980) Evaluation of aerosol aspiration efficiency as a function of stokes number, velocity ratio and nozzle angle. J Aerosol Sci 11:179–188CrossRefGoogle Scholar
  8. 8.
    Dzubay TG, Stevens RK (1975) Ambient air analysis with dichotomous sampler and X-ray fluorescence spectrometer. Environ Sci Technol 9: 663–668Google Scholar
  9. 9.
    European Committee for Standardization (1998) EN 12341:1998 Air quality—Determination of the PM 10 fraction of suspended particulate matter—Reference method and field test procedure to demonstrate reference equivalence of measurement methods. BrusselsGoogle Scholar
  10. 10.
    Forney LJ, Ravenhall DG, Lee SS (1982) Experimental and theoretical study of a two-dimensional virtual impactor. Environ Sci Technol 16:492–497Google Scholar
  11. 11.
    Fuchs NA (1964) The Mechanics of Aerosols. Pergamon Press, OxfordGoogle Scholar
  12. 12.
    Granger RA (1995) Fluid Mechanics. Dover Publications, New YorkGoogle Scholar
  13. 13.
    Haglund JS, Chandra S, McFarland AR (2002) Evaluation of a high volume aerosol concentrator. Aerosol Sci Technol 36:690–696CrossRefGoogle Scholar
  14. 14.
    Haglund JS, McFarland AR (2004) A circumferential slot virtual impactor. Aerosol Sci Technol 38:664–674CrossRefGoogle Scholar
  15. 15.
    Hangal S, Willeke K. (1990) Aspiration efficiency: Unified model for all forward sampling angles. Environ Sci Technol 24:688–691.CrossRefGoogle Scholar
  16. 16.
    Heyder J, Gebhart J (1977) Gravitational deposition of particles from laminar aerosol flow through inclined circular tubes. J Aerosol Sci 8:289–295Google Scholar
  17. 17.
    Hangal S, Willeke K (1990) Overall efficiency of tubular inlets sampling at 0–90 degrees from horizontal aerosol flows. Atmos Environ A-Gen 24A:2379–2386.CrossRefGoogle Scholar
  18. 18.
    Hinds WC (1999) Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd edn. Wiley, New YorkGoogle Scholar
  19. 19.
    Ho J (2012) Use of Virtual Impactor (VI) Technology in Biological Aerosol Detection. Kona Powder Part J 29:16–26CrossRefGoogle Scholar
  20. 20.
    Ho J, Stanley NJ, Kuehn TH (2011) Feasibility of using real-time optical methods for detecting the presence of viable bacteria aerosols at low concentrations in clean room environments. Aerobiologia 27:163–172CrossRefGoogle Scholar
  21. 21.
    Kaye PH, Stanley WR, Hirst E et al (2005) Single particle multichannel bio-aerosol fluorescence sensor. Opt Express 13: 3583–3593CrossRefGoogle Scholar
  22. 22.
    Kesavan J, Bottiger JR, McFarland AR (2008) Bioaerosol concentrator performance: comparative tests with viable and with solid and liquid nonviable particles. J Appl Microbiol 104:285–295Google Scholar
  23. Keskinen J, Lehtimäki M, Janka K (1987) Virtual impactor as an accessory to optical particle counters. Aerosol Sci Technol 6:79–83Google Scholar
  24. 24.
    John W (1999) A simple derivation of the cutpoint of an impactor. J. Aerosol Sci. 30:1317–1320CrossRefGoogle Scholar
  25. 25.
    Lee KW, Gieseke JA (1994) Deposition of particles in turbulent pipe flows. J Aerosol Sci 25:699–709Google Scholar
  26. 26.
    Lee P, Chen D-R, Pui DYH (2003) Experimental study of a nanoparticle virtual impactor. J Nanopart Res 5: 269–280Google Scholar
  27. 27.
    Liebhaber FB, Lehtimäki M, Willeke K (1991) Low-cost virtual impactor for large-particle amplification in optical particle counters. Aerosol Sci Technol. 15:208–213CrossRefGoogle Scholar
  28. 28.
    Liu BYH, Pui DYH (1981) Aerosol sampling inlets and inhalable particles. Atmos Environ 15: 589–600Google Scholar
  29. 29.
    Liu BYH, Zhang ZQ, Kuehn TH (1989) A numerical study of inertial errors in anisokinetic sampling. J Aerosol Sci 20: 367–380CrossRefGoogle Scholar
  30. 30.
    Loo BW, Cork CP (1988) Development of High Efficiency Virtual Impactors. Aerosol Sci Technol 9:167–176CrossRefGoogle Scholar
  31. 31.
    Marjamäki M, Keskinen J, Chen D-R et al (2000) Performance evaluation of electrical low pressure impactor (ELPI). J Aerosol Sci 31:249–261CrossRefGoogle Scholar
  32. 32.
    Marple VA and Chien CM (1980) Virtual impactors: a theoretical study. Environ Sci Technol 14:976–984CrossRefGoogle Scholar
  33. 33.
    Marple VA, Olson BA, Rubow KL (2001) Inertial, Gravitational, Centrifugal, and Thermal Collection Techniques. In: Baron PA, Willeke K (ed) Aerosol Measurement: Principles, Techniques, and Applications, 2nd edn. Wiley, New YorkGoogle Scholar
  34. 34.
    Muyshondt A, McFarland AR, Anand NK (1996) Deposition of aerosol particles in contraction fittings. Aerosol Sci Technol 24:205–216CrossRefGoogle Scholar
  35. 35.
    Novick VJ, Alvarez JL (1987) Design of a multistage virtual impactor. Aerosol Sci Technol 6:63–70Google Scholar
  36. 36.
    Pan Y-L, Hartings J, Pinnick RG et al (2003) Single-particle fluorescence spectrometer for ambient aerosols. Aerosol Sci Technol 37:628–639CrossRefGoogle Scholar
  37. 37.
    Park D, Kim Y-H, Woo Park C et al (2009) New bio-aerosol collector using a micromachined virtual impactor. J Aerosol Sci 40:415–422CrossRefGoogle Scholar
  38. 38.
    Pinnick RG, Hill SC, Nachman P, Pendleton JD, Fernandez GL, Mayo MW, Bruno JG (1995). Fluorescence particle counter for detecting airborne bacteria and other biological particles. Aerosol Sci Technol 23: 653–664Google Scholar
  39. 39.
    Pui DYH, Romay-Novas F, Liu BYH (1987) Experimental study of particle deposition in bends of circular cross section. Aerosol Sci Technol 7:301–315CrossRefGoogle Scholar
  40. 40.
    Romay FJ, Roberts, Marple VA et al (2002) A high-performance aerosol concentrator for biological agent detection. Aerosol Sci Technol 36:217–226CrossRefGoogle Scholar
  41. 41.
    Rostedt A, Putkiranta M, MarjamaÌki M et al (2006) Optical chamber design for aerosol particle fluorescent measurement. Proceedings of SPIE—The International Society for Optical Engineering 6398, art. no. 63980GGoogle Scholar
  42. 42.
    Seinfeld JH, Pandis SN (1998) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, New YorkGoogle Scholar
  43. 43.
    Sioutas C, Koutrakis P, Burton RM (1994) Development of a low cutpoint slit virtual impactor for sampling ambient fine particles. J Aerosol Sci 25:1321–1330CrossRefGoogle Scholar
  44. 44.
    Thomas JW (1958) Gravity settling of particles in a horizontal tube. J Air Pollut Control Assoc 8: 32–34Google Scholar
  45. 45.
    Vincent JH (2007) Aerosol Sampling—Science, Standards, Instrumentation and Applications. Wiley, ChichesterGoogle Scholar
  46. 46.
    Wu JJ, Cooper DW, Miller RJ (1989) Virtual impactor aerosol concentrator for cleanroom monitoring. J Environ Sci 32:52–56Google Scholar

Copyright information

© Springer-Verlag New York 2014

Authors and Affiliations

  1. 1.Department of PhysicsTampere University of TechnologyTampereFinland
  2. 2.Nuclear & Thermal PowerFortum Power and Heat OyFortumFinland

Personalised recommendations