Advertisement

Trends in Biological Detection

  • Per JonssonEmail author
  • Torbjörn Tjärnhage
Chapter
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

This chapter shortly summarizes some highlights from the development of modern biodetectors and looks forward in what directions the development is going. The initial expectations may have settled to a more realistic level and biodetectors are now finding their role in different military and security applications. Also biodetectors originally developed for military or security applications are being used in different environmental, medical, industrial and pure scientific applications. Comparison of different detector characteristics and their functioning in a certain application have become more important and methods to test and evaluate biodetectors are now under harmonization and standardization.

References

  1. 1.
    Wheelis M, Rózsa L, Dando M (eds) (2006) Deadly cultures: biological weapons since 1945. Harvard University Press, Cambridge, MAGoogle Scholar
  2. 2.
    Greenwood D (2007) Meeting the Chem–Bio Defense Challenge. Linc Lab J 17 (1):20–27Google Scholar
  3. 3.
    Cabalo J, DeLucia M, Goad A, Lacis J, Narayanan F, Sickenberger D (2008) Overview of the TAC-BIO detector. Proc SPIE 7116:71160D.1-11. doi:10.1117/12.799843Google Scholar
  4. 4.
    DeFreez R (2009) LIF bio-aerosol threat triggers: then and now. Proc SPIE 7484:74840H.1-15. doi:10.1117/12.835088Google Scholar
  5. 5.
    Huang HC, Pan Y-L, Hill SC, Pinnick RG (2010) Fluorescence-Based Classification with Selective Collection and Identification of Individual Airborne Bioaerosol Particles. In: Serpengüzel A, Poon AW (eds) Optical Processes In Microparticles And Nanostructures, A Festschrift dedicated to Richard Kounai Chang on his Retirement from Yale University. Advanced Series in Applied Physics, vol 6. World Scientific, Singapore, pp 153–167. doi:10.1142/9789814295789_0009Google Scholar
  6. 6.
    Hybl JD, Tysk SM, Berry SR, Jordan MP (2006) Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection. Appl Opt 45 (34):8806–8814. doi:10.1364/AO.45.008806Google Scholar
  7. 7.
    Van Wuijckhuijse AL, Stowers MA, Kleefsman WA, Van Baar BLM, Kientz CE, Marijnissen JCM (2005) Matrix-assisted laser desorption/ionisation aerosol time-of-flight mass spectrometry for the analysis of bioaerosols: Development of a fast detector for airborne biological pathogens. J Aerosol Sci 36 (5–6):677–687. doi:10.1016/j.jaerosci.2004.11.003Google Scholar
  8. 8.
    Stowers MA, van Wuijckhuijse AL, Marijnissen JCM, Kientz CE, Ciach T (2006) Fluorescence preselection of bioaerosol for single-particle mass spectrometry. Appl Opt 45 (33):8531–8536. doi:10.1364/AO.45.008531Google Scholar
  9. 9.
    TWOBIAS. http://www.twobias.com/. Accessed 24 February 2014
  10. 10.
    Pichon F, Aligne F, Feugnet G, Blatny JM (2013) A classifier fusion-based approach to improve biological threat detection. Paper presented at the 11th International Symposium on Protection against Chemical and Biological Warfare Agents, Stockholm, Sweden, 3-5 June 2013Google Scholar
  11. 11.
    Baird C, Colburn H, Seiner D, Straub T, Ozanich R, Bruckner-Lea C, Bartholomew R (2012) Biodetection Technologies for First Responders. PNNL-21713. Pacific Northwest National Laboratory, Richland, Washington. Available from: http://www.pnnl.gov/nationalsecurity/technical/chemical_biological/Biodetection_Technologies_for_First_Responders.pdf
  12. 12.
    Carrano JC, Jeys T, Cousins D, Eversole J, Gillespie J, Healy D, Licata N, Loerop W, O’Keefe M, Samuels A, Schultz J, Walter M, Wong N, Billotte W, Munley M, Reich E, Roos J (2004) Chemical and biological sensor standards study. Defense Advanced Research Projects Agency, Arlington VA. Available from: http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA458370
  13. 13.
    Carrano J, Jeys T, Eversole J, Gillespie J, Licata N, Loerop W, Munley M, O’Keefe M, Roos J, Samuels A, Schultz J, Shatz M, Wong N, D’Amico F, Casale AM, Holster SE, McGrath JF, Metrovich A, Murphy C, Nelson-Patel K, Reich E, Riisager T (2010) Chemical and Biological Sensor Standards Study II. Advanced Research Projects Agency and Defense Threat Reduction Agency, Arlington VA. Available from: http://www.dtra.mil/docs/system-documents/Chem_Bio_Sensor_Standards_Study_Vol_2_Oct_2010.pdf
  14. 14.
    EDA—Test & Evaluation of Biological Sampling, Identification and Detection Equipment http://www.eda.europa.eu/projects/projects-search/exchange-of-information-and-scoping-study-concerning-test-evaluation-of-biological-sampling-identification-and-detection-equipment-phase-1-(t-e-bio-dim-phase-1). Accessed 24 February 2014
  15. 15.
    Pan Y-L, Pinnick RG, Hill SC, Rosen JM, Chang RK (2007) Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico. J Geophys Res 112 (D24):D24S19.1-15. doi:10.1029/2007jd008741Google Scholar
  16. 16.
    Huffman JA, Treutlein B, Pöschl U (2010) Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe. Atmos Chem Phys 10 (7):3215–3233. doi:10.5194/acp-10-3215-2010Google Scholar
  17. 17.
    Gabey AM, Gallagher MW, Whitehead J, Dorsey JR, Kaye PH, Stanley WR (2010) Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual channel fluorescence spectrometer. Atmos Chem Phys 10 (10):4453–4466. doi:10.5194/acp-10-4453-2010Google Scholar
  18. 18.
    Gabey AM, Stanley WR, Gallagher MW, Kaye PH (2011) The fluorescence properties of aerosol larger than 0.8 μm in urban and tropical rainforest locations. Atmos Chem Phys 11 (11):5491–5504. doi:10.5194/acp-11-5491-2011Google Scholar
  19. 19.
    Pan Y-L, Hill SC, Pinnick RG, House JM, Flagan RC, Chang RK (2011) Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles. Atmos Environ 45 (8):1555–1563. doi:10.1016/j.atmosenv.2010.12.042Google Scholar
  20. 20.
    Kiselev D, Bonacina L, Wolf J-P (2013) A flash-lamp based device for fluorescence detection and identification of individual pollen grains. Rev Sci Instrum 84:033302.1-7. doi:10.1063/1.4793792Google Scholar
  21. 21.
    BiosparQ. http://www.biosparq.nl. Accessed 24 February 2014
  22. 22.
    Ho J (2011) The future of biological detection: A 2011 update. DRDC Suffield TM 2011-135. Defence R&D Canada, Suffield. Available from: http://www.dvdtinc.com/publications

Copyright information

© Springer-Verlag New York 2014

Authors and Affiliations

  1. 1.Division of Sensor and EW SystemsFOI—Swedish Defence Research AgencyLinköpingSweden
  2. 2.Division of CBRN Defence and SecurityFOI—Swedish Defence Research AgencyUmeåSweden

Personalised recommendations