Skip to main content

Trends in Biological Detection

  • Chapter
  • First Online:
Bioaerosol Detection Technologies

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

This chapter shortly summarizes some highlights from the development of modern biodetectors and looks forward in what directions the development is going. The initial expectations may have settled to a more realistic level and biodetectors are now finding their role in different military and security applications. Also biodetectors originally developed for military or security applications are being used in different environmental, medical, industrial and pure scientific applications. Comparison of different detector characteristics and their functioning in a certain application have become more important and methods to test and evaluate biodetectors are now under harmonization and standardization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wheelis M, Rózsa L, Dando M (eds) (2006) Deadly cultures: biological weapons since 1945. Harvard University Press, Cambridge, MA

    Google Scholar 

  2. Greenwood D (2007) Meeting the Chem–Bio Defense Challenge. Linc Lab J 17 (1):20–27

    Google Scholar 

  3. Cabalo J, DeLucia M, Goad A, Lacis J, Narayanan F, Sickenberger D (2008) Overview of the TAC-BIO detector. Proc SPIE 7116:71160D.1-11. doi:10.1117/12.799843

    Google Scholar 

  4. DeFreez R (2009) LIF bio-aerosol threat triggers: then and now. Proc SPIE 7484:74840H.1-15. doi:10.1117/12.835088

    Google Scholar 

  5. Huang HC, Pan Y-L, Hill SC, Pinnick RG (2010) Fluorescence-Based Classification with Selective Collection and Identification of Individual Airborne Bioaerosol Particles. In: Serpengüzel A, Poon AW (eds) Optical Processes In Microparticles And Nanostructures, A Festschrift dedicated to Richard Kounai Chang on his Retirement from Yale University. Advanced Series in Applied Physics, vol 6. World Scientific, Singapore, pp 153–167. doi:10.1142/9789814295789_0009

    Google Scholar 

  6. Hybl JD, Tysk SM, Berry SR, Jordan MP (2006) Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection. Appl Opt 45 (34):8806–8814. doi:10.1364/AO.45.008806

    Google Scholar 

  7. Van Wuijckhuijse AL, Stowers MA, Kleefsman WA, Van Baar BLM, Kientz CE, Marijnissen JCM (2005) Matrix-assisted laser desorption/ionisation aerosol time-of-flight mass spectrometry for the analysis of bioaerosols: Development of a fast detector for airborne biological pathogens. J Aerosol Sci 36 (5–6):677–687. doi:10.1016/j.jaerosci.2004.11.003

    Google Scholar 

  8. Stowers MA, van Wuijckhuijse AL, Marijnissen JCM, Kientz CE, Ciach T (2006) Fluorescence preselection of bioaerosol for single-particle mass spectrometry. Appl Opt 45 (33):8531–8536. doi:10.1364/AO.45.008531

    Google Scholar 

  9. TWOBIAS. http://www.twobias.com/. Accessed 24 February 2014

  10. Pichon F, Aligne F, Feugnet G, Blatny JM (2013) A classifier fusion-based approach to improve biological threat detection. Paper presented at the 11th International Symposium on Protection against Chemical and Biological Warfare Agents, Stockholm, Sweden, 3-5 June 2013

    Google Scholar 

  11. Baird C, Colburn H, Seiner D, Straub T, Ozanich R, Bruckner-Lea C, Bartholomew R (2012) Biodetection Technologies for First Responders. PNNL-21713. Pacific Northwest National Laboratory, Richland, Washington. Available from: http://www.pnnl.gov/nationalsecurity/technical/chemical_biological/Biodetection_Technologies_for_First_Responders.pdf

  12. Carrano JC, Jeys T, Cousins D, Eversole J, Gillespie J, Healy D, Licata N, Loerop W, O’Keefe M, Samuels A, Schultz J, Walter M, Wong N, Billotte W, Munley M, Reich E, Roos J (2004) Chemical and biological sensor standards study. Defense Advanced Research Projects Agency, Arlington VA. Available from: http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA458370

  13. Carrano J, Jeys T, Eversole J, Gillespie J, Licata N, Loerop W, Munley M, O’Keefe M, Roos J, Samuels A, Schultz J, Shatz M, Wong N, D’Amico F, Casale AM, Holster SE, McGrath JF, Metrovich A, Murphy C, Nelson-Patel K, Reich E, Riisager T (2010) Chemical and Biological Sensor Standards Study II. Advanced Research Projects Agency and Defense Threat Reduction Agency, Arlington VA. Available from: http://www.dtra.mil/docs/system-documents/Chem_Bio_Sensor_Standards_Study_Vol_2_Oct_2010.pdf

  14. EDA—Test & Evaluation of Biological Sampling, Identification and Detection Equipment http://www.eda.europa.eu/projects/projects-search/exchange-of-information-and-scoping-study-concerning-test-evaluation-of-biological-sampling-identification-and-detection-equipment-phase-1-(t-e-bio-dim-phase-1). Accessed 24 February 2014

  15. Pan Y-L, Pinnick RG, Hill SC, Rosen JM, Chang RK (2007) Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico. J Geophys Res 112 (D24):D24S19.1-15. doi:10.1029/2007jd008741

    Google Scholar 

  16. Huffman JA, Treutlein B, Pöschl U (2010) Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe. Atmos Chem Phys 10 (7):3215–3233. doi:10.5194/acp-10-3215-2010

    Google Scholar 

  17. Gabey AM, Gallagher MW, Whitehead J, Dorsey JR, Kaye PH, Stanley WR (2010) Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual channel fluorescence spectrometer. Atmos Chem Phys 10 (10):4453–4466. doi:10.5194/acp-10-4453-2010

    Google Scholar 

  18. Gabey AM, Stanley WR, Gallagher MW, Kaye PH (2011) The fluorescence properties of aerosol larger than 0.8 μm in urban and tropical rainforest locations. Atmos Chem Phys 11 (11):5491–5504. doi:10.5194/acp-11-5491-2011

    Google Scholar 

  19. Pan Y-L, Hill SC, Pinnick RG, House JM, Flagan RC, Chang RK (2011) Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles. Atmos Environ 45 (8):1555–1563. doi:10.1016/j.atmosenv.2010.12.042

    Google Scholar 

  20. Kiselev D, Bonacina L, Wolf J-P (2013) A flash-lamp based device for fluorescence detection and identification of individual pollen grains. Rev Sci Instrum 84:033302.1-7. doi:10.1063/1.4793792

    Google Scholar 

  21. BiosparQ. http://www.biosparq.nl. Accessed 24 February 2014

  22. Ho J (2011) The future of biological detection: A 2011 update. DRDC Suffield TM 2011-135. Defence R&D Canada, Suffield. Available from: http://www.dvdtinc.com/publications

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Jonsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag New York

About this chapter

Cite this chapter

Jonsson, P., Tjärnhage, T. (2014). Trends in Biological Detection. In: Jonsson, P., Olofsson, G., Tjärnhage, T. (eds) Bioaerosol Detection Technologies. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5582-1_15

Download citation

Publish with us

Policies and ethics