Detection of Bioaerosols Using Raman Spectroscopy

  • Hilsamar Félix-Rivera
  • Samuel P. Hernández-RiveraEmail author
Part of the Integrated Analytical Systems book series (ANASYS)


This chapter contains a brief historical perspective and basic principles of the Raman Effect, focusing on its evolution from an esoteric technique to an everyday lab tool used for sample analysis. As a vibrational spectroscopic technique, Raman is complementary to infrared spectroscopy (IRS) and some fundamental differences, as well as similarities between them are discussed. Raman spectroscopy has been established as an excellent tool for both materials characterization and biophysical studies. The type of information obtained from this technique, several applications in detection, identification and characterization of several types of samples are also discussed. Within the main principal applications of Raman spectroscopy and its variations, including Normal Raman, resonance Raman and UV-Raman spectroscopies, coherent anti-stokes Raman scattering and surface enhanced Raman scattering, this chapter focuses on detection of biological aerosols. This topic was reviewed in depth and details are included. Optimization parameters to achieve fast, nondestructive and sensitive analysis on biodetection and to analyze the data are also included briefly to allow the fundamental studies for applications in research areas such as environmental pollution monitoring, biomedicine and in areas of defense and security.


Raman Signal Raman Spectroscopy Surface Enhance Raman Spectroscopy Resonance Raman Dipicolinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was made possible by funding from the U.S. Department of Defense, Proposal Number: 58949-PH-REP, Agreement Number: W911NF-11-1-0152. The authors also acknowledge contributions from Dr. Richard T. Hammond from the Army Research Office, DoD. Support from the U.S. Department of Homeland Security and the Awareness and Localization of Explosives Related Threats (ALERT) Program of the DHS Center of Excellence for Explosives under Award Number 2008-ST-061-ED0001 is also acknowledged. However, the views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. Thanks are due to Dr. Luis F. de la Torre-Quintana for collaboration in the design and preparation of several of the figures and to Luis A. Echevarría for his help and support.


  1. 1.
    Smekal A (1923) Zur quantentheorie der dispersion. Naturwissenschaften 43:873–875CrossRefGoogle Scholar
  2. 2.
    Raman CV, Krishnan KS (1928) A new type of secondary radiation. Nature 121:501–502CrossRefGoogle Scholar
  3. 3.
    Landsberg GS, Mandelstam LI (1928). Naturwissenschaften 16:557–558CrossRefGoogle Scholar
  4. 4.
    McCreery RL (2000) Raman Spectroscopy for Chemical Analysis. John Wiley & Sons, Inc., New York, NYCrossRefGoogle Scholar
  5. 5.
    Long DA (1977) Raman Spectroscopy. Mc-Graw-Hill, New York, NYGoogle Scholar
  6. 6.
    Pelletier MJ (ed) (1999) Analytical Applications of Raman Spectroscopy. Blackwell Science Ltd., London, UKGoogle Scholar
  7. 7.
    Smith E, Dent G (2005) Modern Raman Spectroscopy—A Practical Approach. J. Wiley & Sons, Ltd., Hoboken, NJGoogle Scholar
  8. 8.
    Yan F, Vo-Dinh T (2007) Surface-enhanced Raman scattering detection of chemical and biological agents using a portable Raman integrated tunable sensor. Sensors Actuat B-Chem 121 (1):61–66. doi:10.1016/j.snb.2006.09.032CrossRefGoogle Scholar
  9. 9.
    Kiefer W (2007) Recent Advances in linear and nonlinear Raman spectroscopy I. J Raman Spectrosc 38 (12):1538–1553. doi:10.1002/jrs.1902Google Scholar
  10. 10.
    Kiefer W (2008) Recent advances in linear and nonlinear Raman spectroscopy II. J Raman Spectrosc 39 (12):1710–1725. doi:10.1002/jrs.2171CrossRefGoogle Scholar
  11. 11.
    Pacheco-Londoño LC, Ortiz-Rivera W, Primera-Pedrozo OM, Hernandez-Rivera SP (2009) Vibrational spectroscopy standoff detection of explosives. Anal Bioanal Chem 395 (2):323–335. doi:10.1007/s00216-009-2954-yCrossRefGoogle Scholar
  12. 12.
    Wallin S, Pettersson A, Ostmark H, Hobro A (2009) Laser-based standoff detection of explosives: a critical review. Anal Bioanal Chem 395 (2):259–274. doi:10.1007/s00216-009-2844-3CrossRefGoogle Scholar
  13. 13.
    Sharma S, Misra A (2008) Remote Raman Spectroscopic Detection of Inorganic, Organic and Biological Materials to 100 m and More. Proc ICOPVS, 1: 3–7Google Scholar
  14. 14.
    Moosmuller H, Chakrabarty RK, Arnott WP (2009) Aerosol light absorption and its measurement: A review. J Quant Spectrosc Ra 110:844–878. doi:10.1016/j.jqsrt.2009.02.035CrossRefGoogle Scholar
  15. 15.
    Chase DB (1986) Fourier Raman transform spectroscopy. J Am Chem Soc 108:7485CrossRefGoogle Scholar
  16. 16.
    Chase DB, Rabolt J-F (1994) Fourier Transform Raman Spectroscopy: From Concept to Experiment. Academic Press, New York, NYGoogle Scholar
  17. 17.
    Félix-Rivera H, Hernández-Rivera S (2012) Raman Spectroscopy Techniques for the Detection of Biological Samples in Suspensions and as Aerosol Particles: A Review. Sens Imaging 13 (1):1–25. doi:10.1007/s11220-011-0067-0CrossRefGoogle Scholar
  18. 18.
    Esposito AP, Talley CE, Huser T, Hollars CW, Schaldach CM, Lane SM (2003) Analysis of single bacterial spores by micro-Raman spectroscopy. Appl Spectrosc 57 (7):868–871CrossRefGoogle Scholar
  19. 19.
    Tripathi A, Jabbour RE, Guicheteau JA, Christesen SD, Emge DK, Fountain AW, Bottiger JR, Emmons ED, Snyder AP (2009) Bioaerosol Analysis with Raman Chemical Imaging Microspectroscopy. Anal Chem 81 (16):6981–6990. doi:10.1021/ac901074cCrossRefGoogle Scholar
  20. 20.
    Rŏsch P, Harz M, Peschke K-D, Ronneberger O, Burkhardt H, Schüle A, Schmauz G, Lankers M, Hofer S, Thiele H, Motzkus H-W, Popp J (2006) On-Line Monitoring and Identification of Bioaerosols. Anal Chem, vol 78.Google Scholar
  21. 21.
    Carmona P (1980) Vibrational-spectra and structure of crystalline dipicolinic acid and calcium dipicolinate trihydrate. Spectrochim Acta A 36 (7):705–712CrossRefGoogle Scholar
  22. 22.
    Kolomenskii AA, Jerebtsov SN, Opatrny T, Schuessler HA, Scully MO (2003) Spontaneous Raman spectra of dipicolinic acid in microcrystalline form. J Mod Optic 50 (15–17):2369–2374. doi:10.1080/0950034032000120803CrossRefGoogle Scholar
  23. 23.
    Chan J, Fore S, Wachsman-Hogiu S, Huser T (2008) Raman spectroscopy and microscopy of individual cells and cellular components. Laser Photonics Rev 2 (5):325–349. doi:10.1002/lpor.200810012CrossRefGoogle Scholar
  24. 24.
    Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G, Ziegler LD (2005) Characterization of the Surface Enhanced Raman Scattering (SERS) of bacteria. J Phys Chem B 109 (1):312–320. doi:10.1021/jp040442nCrossRefGoogle Scholar
  25. 25.
    Luna-Pineda T, Soto-Feliciano K, De La Cruz-Montoya E, Londono LCP, Rios-Velazquez C, Hernandez-Rivera SP (2007) Spectroscopic characterization of biological agents using FTIR, Normal Raman and surface enhanced Raman scattering. Proc SPIE 6554, 1–11. doi: 10.1117/12.720338Google Scholar
  26. 26.
    Manoharan R, Ghiamati E, Dalterio RA, Britton KA, Nelson WH, Sperry JF (1990) UV resonance Raman spectra of bacteria, bacterial spores, protoplasts and calcium dipicolinate. J Microbiol Methods 11 (1):1–15. doi: Scholar
  27. 27.
    Hug WF, Bhartia R, Taspin A, Lane A, Conrad P, Sijapati K, Reid RD (2005) Status of miniature integrated UV resonance fluorescence and Raman sensors for detection and identification of biochemical warfare agents. Proc SPIE 59940J. doi:10.1117/12.628923Google Scholar
  28. 28.
    Hug WF, Reid RD, Bhartia R, Lane AL (2008) A new miniature hand-held solar-blind reagentless standoff chemical, biological, and explosives (CBE) sensor. Proc SPIE 69540I–69540IGoogle Scholar
  29. 29.
    Hug WF, Reid RD, Bhartia R, Lane AL (2009) Performance status of a small robot-mounted or hand-held, solar-blind, standoff chemical, biological, and explosives (CBE) sensor. Proc SPIE 73040Z–73040ZGoogle Scholar
  30. 30.
    Hug WF, Bhartia R, Tsapin A, Lane A, Conrad P, Sijapati K, Reid RD (2006) Water and surface contamination monitoring using deep UV laser induced native fluorescence and Raman spectroscopy. Proc SPIE 63780S–63780SGoogle Scholar
  31. 31.
    Chadha S, Nelson WH, Sperry JF (1993) Ultraviolet Micro-Raman spectrograph for the detection of small numbers of bacterial-cells. Rev Sci Instrum 64 (11):3088–3093CrossRefGoogle Scholar
  32. 32.
    Fung KH, Tang IN (1992) Analysis of Aerosol-Particles by Resonance Raman-Scattering Technique. Appl Spectrosc 46 (1):159–162CrossRefGoogle Scholar
  33. 33.
    Fung KH, Tang IN (1992) Aerosol-particle analysis by Resonance Raman-Spectroscopy. J Aerosol Sci 23 (3):301–307CrossRefGoogle Scholar
  34. 34.
    Wu Q, Nelson WH, Elliot S, Sperry JF, Feld M, Dasari R, Manoharan R (2000) Intensities of E. coli Nucleic Acid Raman Spectra Excited Selectively from Whole Cells with 251-nm Light. Anal Chem 72 (13):2981–2986. doi:10.1021/ac990932pCrossRefGoogle Scholar
  35. 35.
    Manoharan R, Ghiamati E, Chadha S, Nelson WH, Sperry JF (1993) Effect of cultural conditions on deep UV Resonance Raman-spectra of bacteria. Appl Spectrosc 47 (12):2145–2150CrossRefGoogle Scholar
  36. 36.
    Ghiamati E, Manoharan R, Nelson WH, Sperry JF (1992) UV Resonance Raman-Spectra of Bacillus Spores. Appl Spectrosc 46 (2):357–364CrossRefGoogle Scholar
  37. 37.
    Wu Q, Hamilton T, Nelson WH, Elliott S, Sperry JF, Wu M (2001) UV Raman Spectral Intensities of E. Coli and Other Bacteria Excited at 228. 9, 244.0, and 248.2 nm. Anal Chem 73 (14):3432–3440. doi:10.1021/ac001268bCrossRefGoogle Scholar
  38. 38.
    Ooi CHR, Beadie G, Kattawar GW, Reintjes JF, Rostovtsev Y, Zubairy MS, Scully MO (2005) Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores. Phys Rev A 72 (2). doi:02380710.1103/PhysRevA.72.023807Google Scholar
  39. 39.
    Scully MO, Kattawar GW, Lucht RP, Opatrny T, Pilloff H, Rebane A, Sokolov AV, Zubairy MS (2002) FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores. P Natl Acad Sci USA 99 (17):10994–11001. doi:10.1073/pnas.172290899CrossRefGoogle Scholar
  40. 40.
    Manoharan R, Ghiamati E, Britton KA, Nelson WH, Sperry JF (1991) Resonance Raman-spectra of aqueous pollen suspensions with 222.5–242.4 nm pulsed laser excitation. Appl Spectrosc 45 (2):307–311CrossRefGoogle Scholar
  41. 41.
    Nelson WH, Dasari R, Feld M, Sperry JF (2004) Intensities of calcium dipicolinate and Bacillus subtilis spore Raman spectra excited with 244 nm light. Appl Spectrosc 58 (12):1408–1412CrossRefGoogle Scholar
  42. 42.
    Pestov D, Zhi MC, Sariyanni ZE, Kalugin NG, Kolomenskii AA, Murawski R, Paulus GG, Sautenkov VA, Schuessler H, Sokolov AV, Welch GR, Rostovtsev YV, Siebert T, Akimov DA, Graefe S, Kiefer W, Scully MO (2005) Visible and UV coherent Raman spectroscopy of dipicolinic acid. P Natl Acad Sci USA 102 (42):14976–14981. doi:10.1073/pnas.0506529102CrossRefGoogle Scholar
  43. 43.
    Grun J, Manka CK, Nikitin S, Zabetakis D, Comanescu G, Gillis D, Bowles J (2007) Identification of Bacteria from Two-Dimensional Resonant-Raman Spectra. Anal Chem 79 (14):5489–5493. doi:10.1021/ac070681hCrossRefGoogle Scholar
  44. 44.
    Müller M, Zumbusch A (2007) Coherent anti-stokes Raman scattering microscopy. ChemPhysChem 8 (15):2157–2170. doi:10.1002/cphc.200700202CrossRefGoogle Scholar
  45. 45.
    Kalasinsky KS, Hadfield T, Shea AA, Kalasinsky VF, Nelson MP, Neiss J, Drauch AJ, Vanni GS, Treado PJ (2007) Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: Signature development and evaluation. Anal Chem 79 (7):2658–2673. doi:10.1021/ac0700575CrossRefGoogle Scholar
  46. 46.
    Cheng JX, Xie XS (2004) Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications. J Phys Chem B 108 (3):827–840. doi:10.1021/jp035693vCrossRefGoogle Scholar
  47. 47.
    Silberberg Y (2009) Quantum Coherent Control for Nonlinear Spectroscopy and Microscopy. Annu Rev Phys Chem 60:277–292. doi:10.1146/annurev.physchem.040808.090427CrossRefGoogle Scholar
  48. 48.
    Downes A, Mouras R, Elfick A (2009) A versatile CARS microscope for biological imaging. J Raman Spectrosc 40 (7): 757–762. doi:10.1002/jrs.2249CrossRefGoogle Scholar
  49. 49.
    Rodriguez LG, Lockett SJ, Holtom GR (2006) Coherent anti-stokes Raman scattering microscopy: A biological review. Cytom Part A 69A (8):779–791. doi:10.1002/cyto.a.20299CrossRefGoogle Scholar
  50. 50.
    Naumann D (2001) FT-infrared and FT-Raman Spectroscopy in biomedical research. In: Gremlich H-U, Yang B (eds) Infrared and Raman spectroscopy of biological material.Google Scholar
  51. 51.
    Petrov GI, Yakovlev VV, Sokolov AV, Scully MO (2005) Detection of Bacillus subtilis spores in water by means of broadband coherent anti-Stokes Raman spectroscopy. Opt Express 13 (23):9537–9542CrossRefGoogle Scholar
  52. 52.
    Pestov D, Murawski RK, Ariunbold GO, Wang X, Zhi MC, Sokolov AV, Sautenkov VA, Rostovtsev YV, Dogariu A, Huang Y, Scully MO (2007) Optimizing the laser-pulse configuration for coherent Raman spectroscopy. Science 316 (5822):265–268. doi:10.1126/science.1139055CrossRefGoogle Scholar
  53. 53.
    Pestov D, Wang X, Ariunbold GO, Murawski RK, Sautenkov VA, Dogariu A, Sokolov AV, Scully MO (2008) Single-shot detection of bacterial endospores via coherent Raman spectroscopy. P Natl Acad Sci USA 105 (2):422–427. doi:10.1073/pnas.0710427105CrossRefGoogle Scholar
  54. 54.
    Petrov GI, Arora R, Yakovlev VV, Wang X, Sokolov AV, Scully MO (2007) Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores. P Natl Acad Sci USA 104 (19):7776–7779. doi:10.1073/pnas.0702107104CrossRefGoogle Scholar
  55. 55.
    Harz A, Rosch P, Popp J (2009) Vibrational Spectroscopy-A Powerful Tool for the Rapid Identification of Microbial Cells at the Single-Cell Level. Cytom Part A 75A (2):104–113. doi:10.1002/cyto.a.20682CrossRefGoogle Scholar
  56. 56.
    Ooi CHR (2009) Theory of coherent anti-Stokes Raman scattering for mesoscopic particle with complex molecules: angular-dependent spectrum. J Raman Spectrosc 40 (7):714–725.CrossRefGoogle Scholar
  57. 57.
    Aroca R, Rodriguez-Llorente S, (1997) Surface-enhanced vibrational spectroscopy. J Molec Struct 408–409: 17–22.CrossRefGoogle Scholar
  58. 58.
    Fleischmann M, Hendra P, McQuillan A (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26 (2):163–166CrossRefGoogle Scholar
  59. 59.
    Jeanmaire D, Van Duyne R (1977) Surface Raman Spectroelectrochemistry. Part I Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20.CrossRefGoogle Scholar
  60. 60.
    Albrecht M G, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Amer Chem Soc 99 (15), 5215–5217.CrossRefGoogle Scholar
  61. 61.
    Moskovits M, (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57 (3).Google Scholar
  62. 62.
    Schrader B (ed) (1995) Infrared and Raman spectroscopy: Methods and applications. VCH, New York, NY.CrossRefGoogle Scholar
  63. 63.
    Lee PC, Meisel D (1982) Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols. J Phys Chem 86:3391CrossRefGoogle Scholar
  64. 64.
    Efrima S, Zeiri L (2009) Understanding SERS of bacteria. J Raman Spectrosc 40 (3):277–288. doi:10.1002/jrs.2121CrossRefGoogle Scholar
  65. 65.
    Jarvis RM, Law N, Shadi LT, O’Brien P, Lloyd JR, Goodacre R (2008) Surface-enhanced Raman scattering from intracellular and extracellular bacterial locations. Anal Chem 80 (17):6741–6746. doi:10.1021/ac800838vCrossRefGoogle Scholar
  66. 66.
    Yan F, Wabuyele MB, Griffin GD, Vass AA, Vo-Dinh T (2005) Surface-enhanced Raman scattering, detection of chemical and biological agent simulants. IEEE Sens J 5 (4):665–670. doi:10.1109/jsen.2005.850993CrossRefGoogle Scholar
  67. 67.
    Guicheteau J, Argue L, Emge D, Hyre A, Jacobson M, Christesen S (2008) Bacillus spore classification via surface-enhanced Raman spectroscopy and principal component analysis. Appl Spectrosc 62 (3):267–272CrossRefGoogle Scholar
  68. 68.
    Félix-Rivera H, González R, Rodríguez G, Primera-Pedrozo OM, Ríos-Velázquez C, Hernández-Rivera SP (2011) Improving SERS Detection of Bacillus thuringiensis using Silver Nanoparticles Reduced with Hydroxylamine and with Citrate Capped Borohydride. International Journal of Spectroscopy 2011. doi:10.1155/2011/989504Google Scholar
  69. 69.
    Shanmukh S, Jones L, Driskell J, Zhao YP, Dluhy R, Tripp RA (2006) Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett 6 (11):2630–2636. doi:10.1021/nl061666fCrossRefGoogle Scholar
  70. 70.
    Sengupta A, Laucks ML, Dildine N, Drapala E, Davis EJ (2005) Bioaerosol characterization by surface-enhanced Raman spectroscopy (SERS). J Aerosol Sci 36 (5–6):651–664. doi:10.1016/j.jaerosci.2004.11.001CrossRefGoogle Scholar
  71. 71.
    Sengupta A, Brar N, Davis EJ (2007) Bioaerosol detection and characterization by surface-enhanced Raman spectroscopy. J Colloid Interf Sci 309 (1):36–43. doi:10.1016/j.jcis.2007.02.015CrossRefGoogle Scholar
  72. 72.
    Jarvis RM, Goodacre R (2008) Characterisation and identification of bacteria using SERS. Chem Soc Rev 37 (5):931–936. doi:10.1039/b705973fCrossRefGoogle Scholar
  73. 73.
    Sengupta A, Mujacic M, Davis EJ (2006) Detection of bacteria by surface-enhanced Raman spectroscopy. Anal and Bioanal Chem 386 (5):1379–1386. doi:10.1007/s00216-006-0711-zCrossRefGoogle Scholar
  74. 74.
    Sengupta A, Laucks ML, Davis EJ (2005) Surface-enhanced Raman spectroscopy of bacteria and pollen. Appl Spectrosc 59 (8):1016–1023CrossRefGoogle Scholar
  75. 75.
    Wang YL, Lee K, Irudayaraj J (2010) Silver Nanosphere SERS Probes for Sensitive Identification of Pathogens. J Phys Chem C 114 (39):16122–16128. doi:10.1021/jp1015406CrossRefGoogle Scholar
  76. 76.
    Knauer M, Ivleva NP, Niessner R, Haisch C (2010) Optimized Surface-enhanced Raman Scattering (SERS) Colloids for the Characterization of Microorganisms. Anal Sci 26 (7):761–766CrossRefGoogle Scholar
  77. 77.
    Zhang XY, Young MA, Lyandres O, Van Duyne RP (2005) Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J Am Chem Soc 127 (12):4484–4489. doi:10.1021/ja0436623b0bCrossRefGoogle Scholar
  78. 78.
    Dhawan A, Du Y, Yan F, Gerhold MD, Misra V, Vo-Dinh T (2010) Methodologies for Developing Surface-Enhanced Raman Scattering (SERS) Substrates for Detection of Chemical and Biological Molecules. IEEE Sens J 10 (3):608–616. doi:10.1109/jsen.2009.2038634CrossRefGoogle Scholar
  79. 79.
    Cheng HW, Luo WQ, Wen GL, Huan SY, Shen GL, Yu RQ (2010) Surface-enhanced Raman scattering based detection of bacterial biomarker and potential surface reaction species. Analyst 135 (11):2993–3001. doi:10.1039/c0an00421aCrossRefGoogle Scholar
  80. 80.
    Chan JW, Esposito AP, Talley CE, Hollars CW, Lane SM, Huser T (2004) Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy. Anal Chem 76 (3):599–603. doi:10.1021/ac0350155CrossRefGoogle Scholar
  81. 81.
    Butler JR, Wills JB, Mitchem L, Burnham DR, McGloin D, Reid JP (2009) Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets. Lab Chip 9 (4):521–528. doi:10.1039/b814545hCrossRefGoogle Scholar
  82. 82.
    Schweiger G (1990) Raman-Scattering on Single Aerosol-Particles and on Flowing Aerosols—A Review. J Aerosol Sci 21 (4):483–509CrossRefGoogle Scholar
  83. 83.
    Petrov DV (2007) Raman spectroscopy of optically trapped particles. J Opt A-Pure Appl Op 9 (8):S139–S156. doi:10.1088/1464-4258/9/8/s06CrossRefGoogle Scholar
  84. 84.
    Hopkins RJ, Mitchem L, Ward AD, Reid JP (2004) Control and characterization of a single aerosol droplet in a single-beam gradient-force optical trap. Phys Chem Chem Phys 6 (21):4924–4927. doi:10.1039/b414459 gCrossRefGoogle Scholar
  85. 85.
    Lübben JF, Mund C, Schrader B, Zellner R (1999) Uncertainties in temperature measurements of optically levitated single aerosol particles by Raman spectroscopy. J Mol Struc 480–481:311–316CrossRefGoogle Scholar
  86. 86.
    Alexander TA, Pellegrino PM, Gillespie JB (2003) Near-infrared surface-enhanced-Raman-scattering-mediated detection of single optically trapped bacterial spores. Appl Spectrosc 57 (11):1340–1345CrossRefGoogle Scholar
  87. 87.
    Symes R, Gilham RJJ, Sayer RM, Reid JP (2005) An investigation of the factors influencing the detection sensitivity of cavity enhanced Raman scattering for probing aqueous binary aerosol droplets. Phys Chem Chem Phys 7 (7): 1414–1422. doi:10.1039/b500385 gCrossRefGoogle Scholar
  88. 88.
    Symes R, Sayer RM, Reid JP (2004) Cavity enhanced droplet spectroscopy: Principles, perspectives and prospects. Phys Chem Chem Phys 6 (3):474–487. doi:10.1039/b313370bCrossRefGoogle Scholar
  89. 89.
    Hargreaves M, Macleod N, Brewster V, Munshi T, Edwards H, Matousek P (2009) Application of portable Raman spectroscopy and benchtop spatially offset Raman spectroscopy to interrogate concealed biomaterials. J Raman Spectrosc 40:1875–1880. doi:10.1002/jrs.2335CrossRefGoogle Scholar
  90. 90.
    Maher J, Berger A (2010) Determination of ideal offset for spatially offset Raman Spectroscopy. Appl Spectrosc 64 (1):61–65CrossRefGoogle Scholar
  91. 91.
    Matousek P (2006) Inverse spatially offset Raman Spectroscopy for deep noninvasive probing of turbid media. Appl Spectrosc 60 (11):1341–1347CrossRefGoogle Scholar
  92. 92.
    Balakrishnan G, Hu Y, Nielsen SB, Spiro TG (2005) Tunable kHz Deep Ultraviolet (193–210 nm) Laser for Raman Application. Appl Spectrosc 59 (6):776–781CrossRefGoogle Scholar
  93. 93.
    Ayora MJ, Ballesteros L, Perez R, Ruperez A, Laserna JJ (1997) Detection of atmospheric contaminants in aerosols by surface-enhanced Raman spectrometry. Anal Chim Acta 355 (1):15–21CrossRefGoogle Scholar
  94. 94.
    Vehring R, Aardahl CL, Schweiger G, Davis EJ (1998) The characterization of fine particles originating from an uncharged aerosol: Size dependence and detection limits for Raman analysis. J Aerosol Sci 29 (9):1045–1061CrossRefGoogle Scholar
  95. 95.
    Kahraman M, Yazici MM, Sahin F, Culha M (2007) Experimental parameters influencing surface-enhanced Raman scattering of bacteria. J Biomed Opt 12 (5). doi:10.1117/1.2798640Google Scholar
  96. 96.
    Moore D (2009) Optimal coherent control of sensitivity and selectivity in spectrochemical analysis. Anal Bioanal Chem 393 (1):51–56. doi:10.1007/s00216-008-2318-zCrossRefGoogle Scholar
  97. 97.
    Chalmers JL, Griffiths PR (eds) (2002) Handbook of Vibrational Spectroscopy, vol I. Theory and Instrumentation. John Wiley & Sons Ltd, ChichesterGoogle Scholar
  98. 98.
    Xie C, Mace J, Dinno MA, Li YQ, Tang W, Newton RJ, Gemperline PJ (2005) Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy. Anal Chem 77 (14):4390–4397. doi:10.1021/ac0504971CrossRefGoogle Scholar
  99. 99.
    Schmid U, Rosch P, Krause M, Harz M, Popp J, Baumann K (2009) Gaussian mixture discriminant analysis for the single-cell differentiation of bacteria using micro-Raman spectroscopy. Chemometr Intell Lab 96 (2):159–171. doi:10.1016/j.chemolab.2009.01.008CrossRefGoogle Scholar
  100. 100.
    Jarvis RM, Brooker A, Goodacre R (2004) Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface. Anal Chem 76 (17):5198–5202. doi:10.1021/ac049663fCrossRefGoogle Scholar
  101. 101.
    Kazanci M, Schulte JP, Douglas C, Fratzl P, Pink D, Smith-Palmer T (2009) Tuning the Surface-Enhanced Raman Scattering Effect to Different Molecular Groups by Switching the Silver Colloid Solution pH. Appl Spectrosc 63 (2):214–223CrossRefGoogle Scholar
  102. 102.
    Alvarez-Puebla RnA, Arceo E, Goulet PJG, Garrido JnJ, Aroca RF (2005) Role of Nanoparticle Surface Charge in Surface-Enhanced Raman Scattering. The J Phys Chem B 109 (9):3787–3792. doi:10.1021/jp045015oCrossRefGoogle Scholar
  103. 103.
    Guicheteau J, Christesen S, Emge D, Tripathi A (2010) Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging. J Raman Spectrosc 41 (12):1632–1637. doi:10.1002/jrs.2601CrossRefGoogle Scholar
  104. 104.
    Guicheteau J (2006) Principal component analysis of bacteria using surface-enhanced Raman spectroscopy. Proceedings of SPIE–the international society for optical engineering 6218 (1):62180–62181CrossRefGoogle Scholar
  105. 105.
    Griffiths WD, Decosemo GA L (1994) The assessment of bioaerosols-A critical-review, J Aerosol Sci 25, 1425–1458CrossRefGoogle Scholar
  106. 106.
    Daniels JK, Caldwell TP, Christensen KA, Chumanov G (2006) Monitoring the kinetics of Bacillus subtilis endospore germination via surface-enhanced Raman scattering spectroscopy, Anal Chem 78, 1724–1729CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2014

Authors and Affiliations

  • Hilsamar Félix-Rivera
    • 1
  • Samuel P. Hernández-Rivera
    • 1
    Email author
  1. 1.Center for Chemical Sensors Development/Chemical Imaging Center (CCSD/CIC), ALERT DHS—Center of Excellence for Explosives Research, Department of ChemistryUniversity Puerto Rico-MayagüezMayagüezUSA

Personalised recommendations