5 Structure and Reactivity of Transition Metal Chalcogenides toward the Molecular Oxygen Reduction Reaction

  • Nicolás Alonso-Vante
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 51)

Abstract

Research in low temperature fuel cell reactions has mainly focused on the study of platinum, and/or platinum based materials.1-23 These studies have also been aimed at understanding the fundamentals of the electrode/electrolyte interfacial behavior, in order to optimize the catalytic properties of such materials.1,3,7,17,20,24-33 The reason why most of these studies have been devoted to platinum is evident: this material is the best catalyst, especially for processes occurring at the anode and cathode of low temperature fuel cells (FC).

Keywords

Surfactant Foam Cobalt Lignin Carbonyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Markovic, H. Gasteiger, and P. N. Ross, J. Electrochem. Soc. 144 (1997) 1591.Google Scholar
  2. 2.
    N. M. Markovic, H. A. Gasteiger, B. N. Grgur, and P. N. Ross, J. Electroanal. Chem. 467 (1999) 157.Google Scholar
  3. 3.
    N. M. Markovic, T. J. Schmidt, V. Stamenkovic, and P. N. Ross, Fuel Cells 1 (2001) 105.Google Scholar
  4. 4.
    U. A. Paulus, T. J. Schmidt, H. A. Gasteiger, and R. J. Behm, J. Electroanal. Chem. 495 (2001) 134.Google Scholar
  5. 5.
    V. Stamenkovic, and N. M. Markovic, Langmuir 17 (2001) 2388.Google Scholar
  6. 6.
    V. Stamenkovic, N. M. Markovic, and P. N. Ross, J. Electroanal. Chem. 500 (2001) 44.Google Scholar
  7. 7.
    J. F. Drillet, A. Ee, J. Friedemann, R. Kotz, B. Schnyder, and V. M. Schmidt, Electrochim. Acta 47 (2002) 1983.Google Scholar
  8. 8.
    V. Stamenkovic, T. J. Schmidt, P. N. Ross, and N. M. Markovic, J. Electroanal. Chem. 554 (2003) 191.Google Scholar
  9. 9.
    E. Higuchi, H. Uchida, and M. Watanabe, J. Electroanal. Chem. 583 (2005) 69.Google Scholar
  10. 10.
    V. Komanicky, A. Menzel, and H. You, J. Phys. Chem. B 109 (2005) 23550.Google Scholar
  11. 11.
    K. C. Neyerlin, W. B. Gu, J. Jorne, and H. A. Gasteiger, J. Electrochem. Soc. 153 (2006) A1955.Google Scholar
  12. 12.
    C. W. B. Bezerra, L. Zhang, H. Liu, K. Lee, A. L. B. Marques, E. P. Marques, H. Wang, and J. Zhang, J. Power Sources 173 (2007) 891.Google Scholar
  13. 13.
    N. Alonso-Vante, Pure Appl. Chem. 80 (2008) 2103.Google Scholar
  14. 14.
    K. J. J. Mayrhofer, D. Strmcnik, B. B. Blizanac, V. Stamenkovic, M. Arenz, and N. M. Markovic, Electrochim. Acta 53 (2008) 3181.Google Scholar
  15. 15.
    S. Mukerjee, J. Appl. Electrochem. 20 (1990) 537.Google Scholar
  16. 16.
    N. M. Markovic, H. A. Gasteiger, and P. N. Ross, J. Phys. Chem. 99 (1995) 3411.Google Scholar
  17. 17.
    N. M. Markovic, H. A. Gasteiger, and N. Philip, J. Phys. Chem. 100 (1996) 6715.Google Scholar
  18. 18.
    G. Tamizhmani, J. P. Dodelet, and D. Guay, J. Electrochem. Soc. 143 (1996) 18.Google Scholar
  19. 19.
    V. Climent, N. M. Markovic, and P. N. Ross, J. Phys. Chem. B 104 (2000) 3116.Google Scholar
  20. 20.
    M. Gustavsson, H. Ekström, P. Hanarp, L. Eurenius, G. Lindbergh, E. Olsson, and B. Kasemo, J. Power Sources 163 (2007) 671.Google Scholar
  21. 21.
    E. Antolini, T. Lopes, and E. R. Gonzalez, J. Alloys Compd. 461 (2008) 253.Google Scholar
  22. 22.
    S. Mokrane, L. Makhloufi, and N. Alonso-Vante, J. Solid State Electrochem. 12 (2008) 569.Google Scholar
  23. 23.
    J. C. Haung, R. K. Sen, and E. Yeager, J. Electrochem. Soc. 126 (1979) 786.Google Scholar
  24. 24.
    S. Mukerjee, and J. McBreen, J. Electrochem. Soc. 146 (1999) 600.Google Scholar
  25. 25.
    Y. Y. Tong, C. Rice, N. Godbout, A. Wieckowski, and E. Oldfield, J. Am. Chem. Soc. 121 (1999) 2996.Google Scholar
  26. 26.
    M. M. Schubert, M. J. Kahlich, G. Feldmeyer, M. Huttner, S. Hackenberg, H. A. Gasteiger, and R. J. Behm, Phys. Chem. Chem. Phys. 3 (2001) 1123.Google Scholar
  27. 27.
    G. A. Somorjai, R. L. York, D. Butcher, and J. Y. Park, Phys. Chem. Chem. Phys. 9 (2007) 3500.Google Scholar
  28. 28.
    H. A. Gasteiger, N. Markovic, P. N. Ross, and E. J. Cairns, J. Phys. Chem. 98 (1994) 617.Google Scholar
  29. 29.
    N. M. Markovic, H. A. Gasteiger, P. N. Ross, X. D. Jiang, I. Villegas, and M. J. Weaver, Electrochim. Acta 40 (1995) 91.Google Scholar
  30. 30.
    N. M. Markovic, H. A. Gasteiger, S. T. Sarraf, and P. N. Ross, Abstracts of Papers of the American Chemical Society 210 (1995) 225.Google Scholar
  31. 31.
    N. M. Markovic, B. N. Grgur, C. A. Lucas, and P. Ross, Electrochim. Acta 44 (1998) 1009.Google Scholar
  32. 32.
    C. A. Lucas, N. M. Markovic, and P. N. Ross, Surf. Sci. 425 (1999) L381.Google Scholar
  33. 33.
    N. M. Markovic, and P. N. Ross, Surf. Sci. Rep. 45 (2002) 121.Google Scholar
  34. 34.
    J. Munk, P. A. Christensen, A. Hamnett, and E. Skou, J. Electroanal. Chem. 401 (1996) 215.Google Scholar
  35. 35.
    T. R. Ralph, G. A. Hards, J. E. Keating, S. A. Campbell, D. P. Wilkinson, M. Davis, J. StPierre, and M. C. Johnson, J. Electrochem. Soc. 144 (1997) 3845.Google Scholar
  36. 36.
    T. J. Schmidt, M. Noeske, H. A. Gasteiger, R. J. Behm, P. Britz, W. Brijoux, and H. Bonnemann, Langmuir 13 (1997) 2591.Google Scholar
  37. 37.
    W. Chrzanowski, and A. Wieckowski, Langmuir 14 (1998) 1967.Google Scholar
  38. 38.
    J. W. Long, R. M. Stroud, K. E. Swider-Lyons, and D. R. Rolison, J. Phys. Chem. B 104 (2000) 9772.Google Scholar
  39. 39.
    N. Alonso-Vante, Fuel Cells 6 (2006) 182.Google Scholar
  40. 40.
    H. S. Liu, C. J. Song, L. Zhang, J. J. Zhang, H. J. Wang, and D. P. Wilkinson, J. Power Sources 155 (2006) 95.Google Scholar
  41. 41.
    N. P. Lebedeva, M. T. M. Koper, E. Herrero, J. M. Feliu, and R. A. van Santen, J. Electroanal. Chem. 487 (2000) 37.Google Scholar
  42. 42.
    M. D. Maciá, J. M. Campiña, E. Herrero, and J. M. Feliu, J. Electroanal. Chem. 564 (2004) 141.Google Scholar
  43. 43.
    Y. Suchorski, W. Drachsel, V. V. Gorodetskii, V. K. Medvedev, and H. Weiss, Surf. Sci. 600 (2006) 1579.Google Scholar
  44. 44.
    A. V. Tripkovic, S. L. Gojkovic, K. D. Popovic, and J. D. Lovic, Journal of the Serbian Chemical Society 71 (2006) 1333.Google Scholar
  45. 45.
    M. Chatenet, Y. Soldo-Olivier, E. Chainet, and R. Faure, Electrochim. Acta 53 (2007) 369.Google Scholar
  46. 46.
    O. V. Cherstiouk, A. N. Gavrilov, L. M. Plyasova, I. Y. Molina, G. A. Tsirlina, and E. R. Savinova, J. Solid State Electrochem. 12 (2008) 497.Google Scholar
  47. 47.
    N. M. Markovic, H. A. Gasteiger, and P. N. Ross, Langmuir 11 (1995) 4098.Google Scholar
  48. 48.
    F. Gloaguen, J. M. Léger, C. Lamy, A. Marmann, U. Stimming, and R. Vogel, Electrochim. Acta 44 (1999) 1805.Google Scholar
  49. 49.
    C. Rice, Y. Tong, E. Oldfield, A. Wieckowski, F. Hahn, F. Gloaguen, J. M. Leger, and C. Lamy, J. Phys. Chem. B 104 (2000) 5803.Google Scholar
  50. 50.
    S. Park, Y. Tong, A. Wieckowski, and M. J. Weaver, Electrochem. Commun. 3 (2001) 509.Google Scholar
  51. 51.
    S. Park, S. A. Wasileski, and M. J. Weaver, J. Phys. Chem. B 105 (2001) 9719.Google Scholar
  52. 52.
    P. Waszczuk, J. Solla-Gullón, H. S. Kim, Y. Y. Tong, V. Montiel, A. Aldaz, and A. Wieckowski, J. Catal. 203 (2001) 1.Google Scholar
  53. 53.
    A. Manzo-Robledo, A. C. Boucher, E. Pastor, and N. Alonso-Vante, Fuel Cells 2 (2002) 109.Google Scholar
  54. 54.
    P. K. Babu, Y. Y. Tong, H. S. Kim, and A. Wieckowski, J. Electroanal. Chem. 524 (2002) 157.Google Scholar
  55. 55.
    S. Park, Y. T. Tong, A. Wieckowski, and M. J. Weaver, Langmuir 18 (2002) 3233.Google Scholar
  56. 56.
    A. C. Boucher, N. Alonso-Vante, F. Dassenoy, and W. Vogel, Langmuir 19 (2003) 10885.Google Scholar
  57. 57.
    M. Arenz, K. J. J. Mayrhofer, V. Stamenkovic, B. B. Blizanac, T. Tomoyuki, P. N. Ross, and N. M. Markovic, J. Am. Chem. Soc. 127 (2005) 6819.Google Scholar
  58. 58.
    T. C. Deivaraj, and J. Y. Lee, J. Power Sources 142 (2005) 43.Google Scholar
  59. 59.
    J. Luo, M. M. Maye, V. Petkov, N. N. Kariuki, L. Wang, P. Njoki, D. Mott, Y. Lin, and C. J. Zhong, Chem. Mater. 17 (2005) 3086.Google Scholar
  60. 60.
    K. J. J. Mayrhofer, M. Arenz, B. B. Blizanac, V. Stamenkovic, P. N. Ross, and N. M. Markovic, Electrochim. Acta 50 (2005) 5144.Google Scholar
  61. 61.
    L. M. Vracar, N. V. Krstajic, V. R. Radmilovic, and M. M. Jaksic, J. Electroanal. Chem. 587 (2006) 99.Google Scholar
  62. 62.
    H. Yano, M. Kataoka, H. Yamashita, H. Uchida, and M. Watanabe, Langmuir 23 (2007) 6438.Google Scholar
  63. 63.
    H. Ye, J. A. Crooks, and R. M. Crooks, Langmuir 23 (2007) 11901.Google Scholar
  64. 64.
    B. C. Han, C. R. Miranda, and G. Ceder, Physical Review B 77 (2008).Google Scholar
  65. 65.
    S. Shironita, K. Mori, T. Shimizu, T. Ohmichi, N. Mimura, and H. Yamashita, Appl. Surf. Sci. 254 (2008) 7604.Google Scholar
  66. 66.
    P. N. Ross Jr, J. Electrochem. Soc. 126 (1979) 78.Google Scholar
  67. 67.
    G. L. Beltramo, and M. T. M. Koper, Langmuir 19 (2003) 8907.Google Scholar
  68. 68.
    G. E. Dima, G. L. Beltramo, and M. T. M. Koper, Electrochim. Acta 50 (2005) 4318.Google Scholar
  69. 69.
    T. H. M. Housmans, J. M. Feliu, R. Gomez, and M. T. M. Koper, Chemphyschem 6 (2005) 1522.Google Scholar
  70. 70.
    T. H. M. Housmans, A. H. Wonders, and M. T. M. Koper, J. Phys. Chem. B 110 (2006) 10021.Google Scholar
  71. 71.
    J. Greeley, J. Rossmeisl, A. Hellman, and J. K. Nørskov, Zeitschrift fur Physikalische Chemie 221 (2007) 1209.Google Scholar
  72. 72.
    A. F. Gullá, L. Ganes, R. J. Allen, and S. Mukerjee, Appl. Catal., A 326 (2007) 227.Google Scholar
  73. 73.
    A. Kuzume, E. Herrero, and J. M. Feliu, J. Electroanal. Chem. 599 (2007) 333.Google Scholar
  74. 74.
    S. C. S. Lai, N. P. Lebedeva, T. H. M. Housmans, and M. T. M. Koper, Topics in Catalysis 46 (2007) 320.Google Scholar
  75. 75.
    J. S. Spendelow, Q. Xu, J. D. Goodpaster, P. J. A. Kenis, and A. Wieckowski, J. Electrochem. Soc. 154 (2007).Google Scholar
  76. 76.
    M. P. Andersson, F. Abild-Pedersen, I. N. Remediakis, T. Bligaard, G. Jones, J. Engbak, O. Lytken, S. Horch, J. H. Nielsen, J. Sehested, J. R. Rostrup-Nielsen, J. K. Nørskov, and I. Chorkendorff, J. Catal. 255 (2008) 6.Google Scholar
  77. 77.
    S. Strbac, F. Maroun, O. M. Magnussen, and R. J. Behm, J. Electroanal. Chem. 500 (2001) 479.Google Scholar
  78. 78.
    S. Mukerjee, and J. McBreen, J. Electroanal. Chem. 448 (1998) 163.Google Scholar
  79. 79.
    D. E. Ramaker, B. L. Mojet, D. C. Koningsberger, and W. E. O'Grady, J. Phys.: Condens. Matter 10 (1998) 8753.Google Scholar
  80. 80.
    N. Alonso-Vante, I. V. Malakhov, S. G. Nikitenko, E. R. Savinova, and D. I. Koehubey, Electrochim. Acta 47(2002) 3807.Google Scholar
  81. 81.
    Y. Y. Tong, C. Belrose, A. Wieckowski, and E. Oldfield, J. Am. Chem. Soc. 119 (1997) 11709.Google Scholar
  82. 82.
    Y. Y. Tong, E. Oldfield, and A. Wieckowski, Anal. Chem. 70 (1998) 518a.Google Scholar
  83. 83.
    Y. Y. Tong, C. Rice, A. Wieckowski, and E. Oldfield, J. Am. Chem. Soc. 122 (2000) 1123.Google Scholar
  84. 84.
    T. Kobayashi, P. K. Babu, L. Gancs, J. H. Chung, E. Oldfield, and A. Wieckowski, J. Am. Chem. Soc. 127(2005) 14164.Google Scholar
  85. 85.
    S. C. Chang, Y. H. Ho, and M. J. Weaver, Surf. Sci. 265 (1992) 81.Google Scholar
  86. 86.
    H. A. Gasteiger, N. Markovic, P. N. Ross, and E. J. Cairns, Electrochim. Acta 39 (1994) 1825.Google Scholar
  87. 87.
    S. Park, S. A. Wasileski, and M. J. Weaver, Electrochim. Acta 47(2002) 3611.Google Scholar
  88. 88.
    S. Park, Y. Xie, and M. J. Weaver, Langmuir 18 (2002) 5792.Google Scholar
  89. 89.
    B. Du, and Y. Y. Tong, J. Phys. Chem. B 109 (2005) 17775.Google Scholar
  90. 90.
    F. J. E. Scheijen, G. L. Beltramo, S. Hoeppener, T. H. M. Housmans, and M. T. M. Koper, J. Solid State Electrochem. 12 (2008) 483.Google Scholar
  91. 91.
    C. Sealy, Materials Today 11 (2008) 65.Google Scholar
  92. 92.
    Y. Feng, and N. Alonso-Vante, Phys. Stat. Sol. (b) 245 (2008) 1792.Google Scholar
  93. 93.
    R. R. Adzic, J. Zhang, K. Sasaki, M. B. Vukmirovic, M. Shao, J. X. Wang, A. U. Nilekar, M. Mavrikakis, J. A. Valerio, and F. Uribe, Topics in Catalysis 46 (2007) 249.Google Scholar
  94. 94.
    S. R. Brankovic, J. X. Wang, and R. R. Adzic, Electrochem. Solid-State Lett. 4 (2001).Google Scholar
  95. 95.
    M. B. Vukmirovic, J. Zhang, K. Sasaki, A. U. Nilekar, F. Uribe, M. Mavrikakis, and R. R. Adzic, Electrochim. Acta 52 (2007) 2257.Google Scholar
  96. 96.
    J. Zhang, F. H. B. Lima, M. H. Shao, K. Sasaki, J. X. Wang, J. Hanson, and R. R. Adzic, J. Phys. Chem. B 109 (2005) 22701.Google Scholar
  97. 97.
    P. H. Matter, E. J. Biddinger, and U. S. Ozkan, Catalysis 20 (2007) 338.Google Scholar
  98. 98.
    H. Meng, and P. K. Shen, Electrochem. Commun. 8 (2006) 588.Google Scholar
  99. 99.
    G. Kawamura, H. Okamoto, A. Ishikawa, and T. Kudo, J. Electrochem. Soc 134 (1987) 1653.Google Scholar
  100. 100.
    H. Okamoto, G. Kawamura, A. Ishikawa, and T. Kudo, J. Electrochem. Soc. 134 (1987) 1649.Google Scholar
  101. 101.
    C. J. Barnett, G. T. Burstein, A. R. J. Kucernak, and K. R. Williams, Electrochim. Acta 42 (1997) 2381.Google Scholar
  102. 102.
    D. R. McIntyre, G. T. Burstein, and A. Vossen, J. Power Sources 107 (2002) 67.Google Scholar
  103. 103.
    C. Z. Deng, and M. J. Dignam, J. Electrochem. Soc. 145 (1998) 3513.Google Scholar
  104. 104.
    C. Z. Deng, and M. J. Dignam, J. Electrochem. Soc. 145 (1998) 3507.Google Scholar
  105. 105.
    R. Z. Yang, A. Bonakdarpour, E. Bradley, P. Stoffyn-Egli, and J. R. Dahn, J. Electrochem. Soc. 154 (2007) A275.Google Scholar
  106. 106.
    R. Z. Yang, K. Stevens, A. Bonakdarpour, and J. R. Dahn, J. Electrochem. Soc. 154 (2007) B893.Google Scholar
  107. 107.
    A. B. Anderson, and R. A. Sidik, J. Phys. Chem. B 108 (2004) 5031.Google Scholar
  108. 108.
    P. Gouérec, and M. Savy, Electrochim. Acta 44 (1999) 2653.Google Scholar
  109. 109.
    C. Song, L. Zhang, J. Zhang, D. P. Wilkinson, and R. Baker, Fuel Cells 7 (2007) 9.Google Scholar
  110. 110.
    O. Contamin, C. Debiemme-Chouvy, M. Savy, and G. Scarbeck, J. New Mater. Electrochem. Syst. 3 (2000) 67.Google Scholar
  111. 111.
    P. Gouerec, M. Savy, and J. Riga, Electrochim. Acta 43 (1998) 743.Google Scholar
  112. 112.
    R. Jasinski, Nature 201 (1964) 1212.Google Scholar
  113. 113.
    K. Wiesener, D. Ohms, V. Neumann, and R. Franke, Mater. Chem. Phys. 22 (1989) 457.Google Scholar
  114. 114.
    Z.-F. Ma, X.-Y. Xie, X.-X. Ma, D.-Y. Zhang, Q. Ren, N. He-Mohr, and V. M. Schmidt, Electrochem. Commun. 8 (2006) 389.Google Scholar
  115. 115.
    M. Shao, P. Liu, J. Zhang, and R. Adzic, J. Phys. Chem. B (2007).Google Scholar
  116. 116.
    M. R. Tarasevich, V. A. Bogdanovskaya, L. N. Kuznetsova, A. D. Modestov, B. N. Efremov, A. E. Chalykh, Y. G. Chirkov, N. A. Kapustina, and M. R. Ehrenburg, J. Appl. Electrochem. 37 (2007) 1503.Google Scholar
  117. 117.
    S. Ladas, R. Imbihl, and G. Ertl, Surf. Sci. 280 (1993) 14.Google Scholar
  118. 118.
    A. Safavi, N. Maleki, F. Tajabadi, and E. Farjami, Electrochem. Commun. 9 (2007) 1963.Google Scholar
  119. 119.
    J. L. Fernandez, V. Raghuveer, A. Manthiram, and A. J. Bard, J. Am. Chem. Soc. 127 (2005) 13100.Google Scholar
  120. 120.
    N. Alonso-Vante. in Chemical Physics of Nanostructured Semiconductors Ed. by A. I. Kokorin, and D. W. Bahnemann, VSP Brill Academic: Zeist, Neth, 2003, p 135.Google Scholar
  121. 121.
    N. Alonso-Vante, P. Bogdanoff, and H. Tributsch, J. Catal. 190 (2000) 240.Google Scholar
  122. 122.
    N. Alonso-Vante, M. Fieber-Erdmann, H. Rossner, E. Holub-Krappe, C. Giorgetti, A. Tadjeddine, E. Dartyge, A. Fontaine, and R. Frahm, Journal De Physique. IV: JP 7 (1997).Google Scholar
  123. 123.
    N. Alonso-Vante, and W. Vogel, “Ruthenium metal cluster-like materials as catalysts. An insight into the genesis of the material and their role in (electro)catalysis”; Meeting Abstracts, 2005.Google Scholar
  124. 124.
    V. S. Bagotzky, A. M. Skundin, and E. K. Tuseeva, Electrochim. Acta 21 (1976) 29.Google Scholar
  125. 125.
    L. D. Burke, and O. J. Murphy, J. Electroanal. Chem. 101 (1979) 351.Google Scholar
  126. 126.
    J. H. Choi, C. M. Johnston, D. Cao, P. K. Babu, A. Wieckowski, N. Alonso-Vante, and P. Zelenay, “Oxygen reduction electrocatalysis at chalcogen-modified ruthenium cathodes”; ECS Transactions, 2006.Google Scholar
  127. 127.
    D. Diaz, S. E. Castillo-Blum, O. Alvarez-Fregoso, G. Rodriguez-Gattorno, P. Santiago-Jacinto, L. Rendon, L. Ortiz-Frade, and Y. J. Leon-Paredes, J. Phys. Chem. B 109 (2005) 22715.Google Scholar
  128. 128.
    S. Fiechter, I. Dorbandt, P. Bogdanoff, G. Zehl, H. Schulenburg, H. Tributsch, M. Bron, J. Radnik, and M. Fieber-Erdmann, J. Phys. Chem. C 111 (2007) 477.Google Scholar
  129. 129.
    V. Le Rhun, and N. Alonso-Vante, J. New Mater. Electrochem. Syst. 3 (2000) 331.Google Scholar
  130. 130.
    J. W. Lee, and B. N. Popov, J. Solid State Electrochem. 11 (2007) 1355.Google Scholar
  131. 131.
    D. Baresel, W. Sarholz, P. Scharner, and J. Schmitz, Ber. Bunsen-Ges. 78 (1974) 608.Google Scholar
  132. 132.
    R. A. Sidik, and A. B. Anderson, “AEI: Molecular modeling of non-precious metal catalysts for oxygen electroreduction”; ACS National Meeting Book of Abstracts, 2005.Google Scholar
  133. 133.
    L. Zhang, J. J. Zhang, D. P. Wilkinson, and H. J. Wang, J. Power Sources 156 (2006) 171.Google Scholar
  134. 134.
    N. Alonso-Vante, and H. Tributsch, Nature 323 (1986) 431.Google Scholar
  135. 135.
    N. Alonso-Vante. in Handbook of fuel cells, Vol. 2, Ed. by W. Vielstich, A. Lamm, and H. Gasteiger, John Wiley & Sons, Ltd: Chichester, 2003, p 534.Google Scholar
  136. 136.
    R. Bashyam, and P. Zelenay, Nature 443 (2006) 63.Google Scholar
  137. 137.
    M. Lefevre, E. Proietti, F. Jaouen, and J.-P. Dodelet, Science 324 (2009) 71.Google Scholar
  138. 138.
    N. Alonso-Vante. in Catalysis of Nanoparticles Surfaces, Ed. by A. Wieckowski, E. Savinova, and C. Vayenas, Marcel Dekker, Inc.: NY, Basel, 2003, p 931.Google Scholar
  139. 139.
    R. D. Adams, G. Chen, and W. Wu, Journal of Cluster Science 4 (1993) 119.Google Scholar
  140. 140.
    C. W. Hills, M. S. Nashner, A. I. Frenkel, J. R. Shapley, and R. G. Nuzzo, Langmuir 15 (1999) 690.Google Scholar
  141. 141.
    M. S. Nashner, A. I. Frenkel, D. L. Adler, J. R. Shapley, and R. G. Nuzzo, J. Am. Chem. Soc. 119 (1997) 7760.Google Scholar
  142. 142.
    N. Alonso-Vante, M. Giersig, and H. Tributsch, J. Electrochem. Soc. 138 (1991) 639.Google Scholar
  143. 143.
    V. Le Rhun. PhD, University of Poiters, 2001.Google Scholar
  144. 144.
    W. Vogel, P. Kaghazchi, T. Jacob, and N. Alonso-Vante, J. Phys. Chem. C (2007).Google Scholar
  145. 145.
    F. Dassenoy, W. Vogel, and N. Alonso-Vante, J. Phys. Chem. B 106 (2002) 12152.Google Scholar
  146. 146.
    W. Vogel, V. Le Rhun, E. Garnier, and N. Alonso-Vante, J. Phys. Chem. B 105 (2001) 5238.Google Scholar
  147. 147.
    V. I. Zaikovskii, K. S. Nagabhushana, V. V. Kriventsov, K. N. Loponov, S. V. Cherepanova, R. I. Kvon, H. Bonnemann, D. I. Kochubey, and E. R. Savinova, J. Phys. Chem. B 110 (2006) 6881.Google Scholar
  148. 148.
    S. A. Campbell. Non-noble metal catalysts for the oxygen reduction reaction. In US Patent, 2004; pp US 2004/0096728 A1.Google Scholar
  149. 149.
    D. Cao, A. Wieckowski, J. Inukai, and N. Alonso-Vante, J. Electrochem. Soc. 153 (2006) A869.Google Scholar
  150. 150.
    C. Delacote, C. Johnston, M., P. Zelenay, and N. Alonso-Vante, ECS Trans. 6 (2008) 289.Google Scholar
  151. 151.
    Y. Feng, T. He, and N. Alonso-Vante, Chem. Mater. 20 (2008) 26.Google Scholar
  152. 152.
    Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjal, and A. P. Alivisatos, Science 304 (2004) 711.Google Scholar
  153. 153.
    Y. Yin, C. K. Erdonmez, A. Cabot, S. Hughes, and A. P. Alivisatos, Advanced Functional Materials 16 (2006) 1389.Google Scholar
  154. 154.
    H. Bönnemann, and K. S. Nagabhushana, J. New Mater. Electrochem. Syst. 7 (2004) 93.Google Scholar
  155. 155.
    S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287 (2000) 1989.Google Scholar
  156. 156.
    S. Sun, S. Anders, H. F. Hamann, J. U. Thiele, J. E. E. Baglin, T. Thomson, E. E. Fullerton, C. B. Murray, and B. D. Terris, J. Am. Chem. Soc. 124 (2002) 2884.Google Scholar
  157. 157.
    C. Delacote, Y. Feng, and N. Alonso Vante. in Catalysts for Oxygen Electroreduction - Recent Developments and New Directions, Vol. 10, Ed. by T. He, Transworld Research Network: Kerala, 2009, p 231.Google Scholar
  158. 158.
    M. R. Tarasevich, A. Sadkowski, and E. Yeager. in Comprehensive Treatise in Electrochemistry, Vol. 7, Ed. by J. O. M. Bockris, B. E. Conway, E. Yeager, S. U. M. Khan, and R. E. White, Plenum: New York, 1983, p 301.Google Scholar
  159. 159.
    J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jonsson, J. Phys. Chem. B 108 (2004) 17886.Google Scholar
  160. 160.
    N. A. Lange, Lange's Handbook of Chemistry, Fifteenth ed.; McGraw-Hill, Inc., 1992.Google Scholar
  161. 161.
    Y. Feng, T. He, and N. Alonso-Vante, Electrochim. Acta 54 (2009) 5252.Google Scholar
  162. 162.
    A. Lewera, J. Inukai, W. P. Zhou, D. Cao, H. T. Duong, N. Alonso-Vante, and A. Wieckowski, Electrochim. Acta 52 (2007) 5759.Google Scholar
  163. 163.
    K. Lee, L. Zhang, and J. J. Zhang, J. Power Sources 165 (2007) 108.Google Scholar
  164. 164.
    A. Bonakdarpour, C. Delacote, R. Yang, A. Wieckowski, and J. R. Dahn, Electrochem. Commun. 10 (2008) 611.Google Scholar
  165. 165.
    H. Behret, H. Binder, and G. Sandstede, Electrochim. Acta 20 (1975) 111.Google Scholar
  166. 166.
    E. Vayner, and A. B. Anderson, J. Phys. Chem. C 111 (2007) 9330.Google Scholar
  167. 167.
    R. A. Sidik, A. B. Anderson, N. P. Subramanian, S. P. Kumaraguru, and B. N. Popov, J. Phys. Chem. B 110 (2006) 1787.Google Scholar
  168. 168.
    D. Susac, A. Sode, L. Zhu, P. C. Wong, M. Teo, D. Bizzotto, K. A. R. Mitchell, R. R. Parsons, and S. A. Campbell, J. Phys. Chem. B 110 (2006) 10762.Google Scholar
  169. 169.
    D. Susac, L. Zhu, M. Teo, A. Sode, K. C. Wong, P. C. Wong, R. R. Parsons, D. Bizzotto, K. A. R. Mitchell, and S. A. Campbell, J. Phys. Chem. C 111 (2007) 18715.Google Scholar
  170. 170.
    S. Wasmus, and A. Küver, J. Electroanal. Chem. 461 (1999) 14.Google Scholar
  171. 171.
    A. S. Aricò, S. Srinivasan, and V. Antonucci, Fuel Cells 1 (2001) 133.Google Scholar
  172. 172.
    A. Heinzel, and V. M. Barragan, J. Power Sources 84 (1999) 70.Google Scholar
  173. 173.
    Z. Jusys, and R. J. Behm, Electrochim. Acta 49 (2004) 3891.Google Scholar
  174. 174.
    D. Chu, and S. Gilman, J. Electrochem. Soc. 141 (1994) 1770.Google Scholar
  175. 175.
    N. Alonso-Vante, B. Schubert, and H. Tributsch, Mater. Chem. Phys. 22 (1989) 281.Google Scholar
  176. 176.
    S. Wasmus, J. T. Wang, and R. F. Savinell, J. Electrochem. Soc. 142 (1995) 3825.Google Scholar
  177. 177.
    V. A. Paganin, E. Sitta, T. Iwasita, and W. Vielstich, J. Appl. Electrochem. 35 (2005) 1239.Google Scholar
  178. 178.
    D. T. Whipple, R. S. Jayashree, D. Egas, N. Alonso-Vante, and P. J. A. Kenis, Electrochim. Acta 54 (2009) 4384.Google Scholar
  179. 179.
    O. Solorza-Feria, K. Ellmer, M. Giersig, and N. Alonso-Vante, Electrochim. Acta 39 (1994) 1647.Google Scholar
  180. 180.
    P. K. Babu, A. Lewera, H. C. Jong, R. Hunger, W. Jaegermann, N. Alonso-Vante, A. Wieckowski, and E. Oldfield, J. Am. Chem. Soc. 129 (2007) 15140.Google Scholar
  181. 181.
    I. V. Malakhov, S. G. Nikitenko, E. R. Savinova, D. I. Kochubey, and N. Alonso-Vante, J. Phys. Chem. B 106 (2002) 1670.Google Scholar
  182. 182.
    I. V. Malakhov, S. G. Nikitenko, E. R. Savinova, D. I. Kochubey, and N. Alonso-Vante, Nucl. Instrum. Methods Phys. Res., Sect. A 448 (2000) 323.Google Scholar
  183. 183.
    J. Inukai, D. Cao, A. Wieckowski, K.-C. Chang, A. Menzel, V. Komanicky, and H. You, J. Phys. Chem. C 111 (2007) 16889.Google Scholar
  184. 184.
    D. I. Kochubey, S. G. Nikitenko, V. N. Parmon, Y. A. Gruzdkov, H. Tributsch, and N. Alonso-Vante, Physica B: Condensed Matter 208-209 (1995) 694.Google Scholar
  185. 185.
    N. Alonso-Vante, P. Borthen, M. Fieber-Erdmann, H. H. Strehblow, and E. Holub-Krappe, Electrochim. Acta 45 (2000) 4227.Google Scholar
  186. 186.
    T. Lana Villarreal, P. Bogdanoff, P. Salvador, and N. Alonso-Vante, Sol. Energy Mater. Sol. Cells 83 (2004) 347.Google Scholar
  187. 187.
    N. Alonso-Vante, S. Cattarin, and M. Musiani, J. Electroanal. Chem. 481 (2000) 200.Google Scholar
  188. 188.
    G. Rothenberger, D. Fitzmaurice, and M. Grätzel, J. Phys. Chem. 96 (1992) 5983.Google Scholar
  189. 189.
    D. Bahnemann, A. Henglein, and L. Spanhel, Faraday Discussions of the Chemical Society 78 (1984) 151.Google Scholar
  190. 190.
    K. Vinodgopal, I. Bedja, S. Hotchandani, and P. V. Kamat, Langmuir 10 (1994) 1767.Google Scholar
  191. 191.
    T. Lana Villarreal, and N. Alonso-Vante, “Photoinduced charge transfer between TiO2 particles and RuxSey clusters: A photocatalytic performance improvement”; Meeting Abstracts, 2005, ECS 207th - Quebec City, Canada.Google Scholar
  192. 192.
    C. A. K. Gouvêa, F. Wypych, S. G. Moraes, N. Durán, and P. Peralta-Zamora, Chemosphere 40 (2000) 427.Google Scholar
  193. 193.
    M. Yeber, J. Rodriguez, J. Freer, J. Baeza, N. Durán, and H. D. Mansilla, Chemosphere 39 (1999) 1679.Google Scholar
  194. 194.
    C.-N. Chang, Y.-S. Ma, G.-C. Fang, A. C. Chao, M.-C. Tsai, and H.-F. Sung, Chemosphere 56 (2004) 1011.Google Scholar
  195. 195.
    A. M. Pedroza, R. Mosqueda, N. Alonso-Vante, and R. Rodriguez-Vazquez, Chemosphere 67 (2007) 793.Google Scholar
  196. 196.
    M. Cristina Yeber, J. Rodríguez, J. Freer, N. Durán, and H. D. Mansilla, Chemosphere 41 (2000) 1193.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nicolás Alonso-Vante
    • 1
  1. 1.Laboratory of Electrocatalysis, UMR-CNRS 6503University of PoitiersPoitiersFrance

Personalised recommendations