Skip to main content

2 Passive Oxide Films on Iron by In-Situ Detection of Optical Techniques

  • Chapter
  • First Online:
Progress in Corrosion Science and Engineering II

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 47))

Abstract

Passivity of metals was initially stated by Faraday1 and Schoenbein2 over 150 years ago. The origin of the passivity was argued and at the present the passivity is thought to be the formation of three dimensional oxide films. It is stably formed in aqueous solution. The passive oxides are extremely thin (usually a few nm), so it is very difficult to detect them analytical techniques. For the quantitative description, electrochemistry is a key technology, because the oxidation state of the metal surface can be precisely controlled by electrochemical apparatus. Since the electrochemical control is restricted into solution phase, the passivated surface should be characterized in the same phase. To overcome the difficulty for characterization, several optical techniques have been applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. M. Faraday, Philos. Mag., 9 (1836) 57.

    Google Scholar 

  2. 2 C. T. Schoenbein, Philos. Mag, 9 (1836) 53.

    Google Scholar 

  3. 3 H. Freundlich, G. Patscheke, and H. Zocher, Z. Phys. Chem., 238 (1927) 321.

    Google Scholar 

  4. 4 L. Tronstadt and C. W. Borgmann, Trans. Rafaday Soc., 30 (1934) 349.

    Article  Google Scholar 

  5. 5 N. Sato, T. Noda, and K. Kudo, Electrochim. Acta, 19 (1974) 471.

    Article  CAS  Google Scholar 

  6. 6 R. M. A. Azzum and N. M. Basshra, Ellipsometry and Polarized Light, North Holland-Elesevier Sci. Publ., Amsterdam, 1977.

    Google Scholar 

  7. 7 W. -K. Paik and J. O’M. Bockris, Surf. Sci., 28 (1971) 61.

    Google Scholar 

  8. 8 B. D. Cahan, J. Horkans, and E. Yeager, Surf. Sci., 37 (1973) 559.

    Article  CAS  Google Scholar 

  9. 9 J. M. M. Droog and G. A. Bootsma, J. Electroanal. Chem., 105 (1979) 261.

    Article  CAS  Google Scholar 

  10. 10 T. Ohtsuka and K. E. Heusler, J. Electroanal. Chem., 100 (1979) 319.

    Article  CAS  Google Scholar 

  11. 11 T. Ohtsuka, Denki Kagaku, 60 (1992) 1123.

    CAS  Google Scholar 

  12. 12 R. M. A. Azzam, Optica Acta, 30 (1983) 1113.

    Article  CAS  Google Scholar 

  13. 13 J. A. Johnson and N. M. Bashara, J. Opt. Aoc. Am., 61 (1971) 457.

    Article  CAS  Google Scholar 

  14. 14 F. K. Urban III, Appl. Surf. Sci., 33/34 (1988) 934

    Article  Google Scholar 

  15. 15 E. Smith and G. Dent, Modern Raman Spectroscopy- A Practical Approach, John Wiley & Sons, The Atrium, 2005.

    Google Scholar 

  16. 16 T. Ohtsuka and K. Taneda, to be published.

    Google Scholar 

  17. 17 S. R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Prenum Press, New York and London, 1980.

    Google Scholar 

  18. 18 K. Uosaki and H. Kita, in Modern Aspects of Electrochemistry, No. 18, Ed. by P.

    Google Scholar 

  19. E. White, J. O’M. Bockris and B. E. Conway, Plenum Press, New York and London, 1986, p. 1.

    Google Scholar 

  20. 19 T. Ohtsuka and Y. Sasaki, to be published.

    Google Scholar 

  21. 20 M. Ueda and T. Ohtsuka, Corrosion Sci., 44 (2001) 1633.

    Article  Google Scholar 

  22. 21 K. Azumi, T. Ohtsuka, and N. Sato, Denki Kagaku, 53 (1985) 700.

    CAS  Google Scholar 

  23. 22 N. Sato and K. Kudo, Electrochim. Acta, 16 (1971) 447.

    Article  CAS  Google Scholar 

  24. 23 Z. Szklarska-Smialowska and W. Kozlowski, J. Electrochem. Soc., 136 (1984) 234.

    Article  Google Scholar 

  25. 24 Y-T. Chin and B. D. Cahan, J. Electrochem. Soc., 139 (1992) 2432.

    Google Scholar 

  26. 25 K. Azumi, T. Ohtsuka, and N. Sato, Denki Kagaku, 51 (1983) 155

    Google Scholar 

  27. 26 P. Soutiworth, A. Hamnett, A. M. Riley, and M. Sykes, Corros. Sci., 28 (1988) 1139.

    Article  Google Scholar 

  28. 27 N. Sato and T. Noda, Electrochim. Acta, 22 (1977) 839.

    Article  CAS  Google Scholar 

  29. 28 K. J. Vetter, Z. Elektrochem. Ber. Bunsenges. Phys. Chem., 59 (1955) 67.

    CAS  Google Scholar 

  30. 29 Z. Q. Huang and J. L. Ord, J. Electrochem. Soc., 132 (1985) 24.

    Article  CAS  Google Scholar 

  31. 30 K. J. Vetter, Z. Elektrochem. Ber. Bunsenges. Phys. Chem., 60 (1962) 577.

    Google Scholar 

  32. 31 K. J. Vetter, J. Electrochem. Soc., 110 (1963) 597.

    Article  CAS  Google Scholar 

  33. 32 N. F. Mott, Trans. Faraday Soc., 36 (1940) 472.

    Article  CAS  Google Scholar 

  34. 33 H. Cabrera and N. F. Mott, Rep. Progr. Phys., 12 (1949) 163.

    Article  CAS  Google Scholar 

  35. 34 K. J. Vetter and F. Gorn, Electrochim. Acta, 18 (1973) 321.

    Article  CAS  Google Scholar 

  36. 35 K. Azumi, T. Ohtsuka, and N. Sato, Denki-Kagaku, 53 (1985) 700.

    CAS  Google Scholar 

  37. 36 K. E. Heusler, Ber. Bunsenges. Phys. Chem., 72 (1968) 1197.

    CAS  Google Scholar 

  38. 37 T. Ohstuka and A. Ohta, Mat. Sci. and Eng. A, 198 (1995) 169. V. Markovac and M. Cohen, J. Electrochem. Soc., 114 (1967) 678.

    Google Scholar 

  39. 39 J. L. Leibenguth and M. Cohen, J. Electrochem. Soc., 119 (1972) 987.

    Article  CAS  Google Scholar 

  40. 40 K. Hashimoto and M. Cohen, J. Electrochem. Soc., 121 (1974) 37.

    Article  CAS  Google Scholar 

  41. 41 M. Cohen, D. Mitchel and K. Hashimoto, J. Electrochem. Soc., 126 (1979) 442.

    Article  CAS  Google Scholar 

  42. 42 J. W. Schultze, M. Mohr, and M. M. Lohrengel, J. Electroanal. Chem., 154 (1983) 57.

    CAS  Google Scholar 

  43. 43 T. Ohtsuka, J.-C. Ju, S. Ito, and I. Einaga, Corros. Sci., 36 (1994) 1257.

    Article  CAS  Google Scholar 

  44. 44 M. Nagayama and M. Cohen, J. Electrochem. Soc., 110 (1963) 670.

    Article  CAS  Google Scholar 

  45. 45 V. Markovac and M. Cohen, J. Electrochem. Soc., 114 (1967) 674.

    Article  CAS  Google Scholar 

  46. 46 T. Ohtsuka and H. Yamada, Corros. Sci., 40 (1998) 1131.

    Article  CAS  Google Scholar 

  47. 47 J. L. Ord and J. DeSmet, J. Electrochem, Soc., 118 (1971) 206.

    CAS  Google Scholar 

  48. 48 K. Azumi, T. Ohtsuka and N. Sato, J. Electrochem. Soc., 133 (1986) 1326.

    Article  CAS  Google Scholar 

  49. 49 T. Ohtsuka, K. Azumi, and N. Sato, Denki Kagaku, 51 (1983) 155.

    CAS  Google Scholar 

  50. 50 T. Ohtsuka, K. Azumi, and N. Sato, J. De Physique, C10 (1983) 191.

    Google Scholar 

  51. 51 C.-T. Chen and B. D. Cahan, J. Electrochem. Soc., 129 (1982) 17.

    Article  CAS  Google Scholar 

  52. 52 P. C. Searson, P. M. Latanision, and U. Stimming, J. Electrochem. Soc., 135 (1988) 1358.

    Article  CAS  Google Scholar 

  53. 53 D. J. Wheeler, B. D. Cahan, C. T. Chen, and E. Yeager, in Passivity of Metals, Ed.

    Google Scholar 

  54. by R. P. Frankenthal and J. Kruger, The Electrochem. Soc. Inc., Pronceton, 1978, p. 546.

    Google Scholar 

  55. 54 S. M. Wilhelm and N. Hackerman, J. Electrochem. Soc., 128 (1981) 1668.

    Article  CAS  Google Scholar 

  56. 55 S. M. Wilhelm, K. S. Yun, L. W. Ballenger, and N. Hackerman, J. Electrochem. Soc., 126 (1979) 419.

    Article  CAS  Google Scholar 

  57. 56 U. Stimming and J. W. Schultze, Ber. Bunsenges. Phys. Chem., 80, (1976) 1297.

    CAS  Google Scholar 

  58. 57 J. C. Rubim and J. Dunnwald, J. Electroanal. Chem., 258 (1989) 327.

    Article  CAS  Google Scholar 

  59. 58 J. Gui and T. M. Devine, Corrosion Sci., 32 (1991) 1105.

    Article  CAS  Google Scholar 

  60. 59 J. Gui and T. M. Devine, Corrosion Sci., 36 (1994) 441

    Article  CAS  Google Scholar 

  61. 60 J. Gui and T. M. Devine, Corrosion Sci., 37 (1995) 1177.

    Article  CAS  Google Scholar 

  62. 61 L. J. Oblonsky, S. Virtanen, V. Schroeder and T. M. Devine, J. Electrochem. Sci., 144 (1997) 1604.

    Article  CAS  Google Scholar 

  63. 62 N. Boucherit, A. Hugot-Le Goff and S. Joiret, Corrosion Sci., 32 (1991) 497.

    Article  CAS  Google Scholar 

  64. 63 W.-C Beek, T. Kang, H.-J. Sohn, and Y. T. Kho. Electrochim. Acta, 46 (20010 2321.

    Google Scholar 

  65. 64 T. Ohtsuka, Materials Transaction, 37 (1996) 67-69.

    CAS  Google Scholar 

  66. 65 T. Ohtsuka, K. Kubo, and N. Sato, Corrosion, 42 (1986) 476.

    Article  CAS  Google Scholar 

  67. 66 R. J. Thibeau, C. W. Brown, and R. H. Heidersbach, Appl. Spectrosc., 32 (1978) 532.

    Article  CAS  Google Scholar 

  68. 67 R. Goetz, D. F. Mitchell, B. MacDougall, and M. J. Graham, J. Electrochem. Soc., 134 (1987) 535.

    Article  CAS  Google Scholar 

  69. 68 J. A. Bordwell, B. MacDougall, and M. J. Graham, J. Electrochem. Soc., 135 (1988) 413.

    Article  Google Scholar 

  70. 69 M. Nagayama and M. Cohen, J. Electrochem. Soc. 109 (1962) 781.

    Article  CAS  Google Scholar 

  71. 70 C. L. Foley, J. Kruger, and C. J. Bechtold, J. Electrochem. Soc. 114 (1967) 994.

    Article  CAS  Google Scholar 

  72. 71 K. Kuroda, B. D. Cahan, Gh. Nazri, E. Yeager, and T. E. Mitchel, J. Electrochem. Soc. 129 (1982) 2163.

    Article  CAS  Google Scholar 

  73. 72 W. E. O’Grady, J. Electrochem. Soc. 127 (1980) 555. M. E. Brett, K. M. Parkin, and M. J. Graham, J. Electrochem. Soc. 133 (1986) 2031.

    Google Scholar 

  74. 74 J. Kruger, Corrosion Sci. 29 (1989) 149.

    Article  CAS  Google Scholar 

  75. 75 A. J. Davenport, J. A., Bardwell, H. S. Isaacs, and B. MacDougall, in Modification

    Google Scholar 

  76. of Passive Films, Ed. by P. Maucus, B. Bauoux, and M. Keddam, The Institute of Materials, London, 1994, 57.

    Google Scholar 

  77. 76 M. F. Toney, A. J. Davenport, J. Oblonsky, M. P. Ryan, and C. M. Vitus, Phys. Rev. Lettt. 79 (1997) 4282.

    Article  CAS  Google Scholar 

  78. 77 T. Konno and M. Nagayama, in Passivity of Metals, Ed. by R. P. Frankelthal and J. Kruger, The Electrochemical Soc., Inc., Princeton, NJ, 1978, p. 585.

    Google Scholar 

  79. 78 K. Azumi, T. Ohtsuka, N. Sato, Transact. Jpn Inst. Metals 27 (1986) 382.

    CAS  Google Scholar 

  80. 79 J. L. Ord and J. H. Bartlett, J. Electrochem. Soc. 112 (1965) 160.

    Article  CAS  Google Scholar 

  81. 80 R. V. Moshtev, Ber. Bunsenges. Phys. Chem. 72 (1968) 452.

    CAS  Google Scholar 

  82. 81 E. M. A. Mattine and I. L. Muller, Corrosion Sci. 42 (2000) 443.

    Article  Google Scholar 

  83. 82 K. Azumi, T. Ohtsuka, and N. Sato, J. Electrochem. Soc. 134 (1987) 1352.

    Article  CAS  Google Scholar 

  84. 83 T. Ohtsuka, Denki Kagaku 65 (1997) 735.

    CAS  Google Scholar 

  85. 84 K. Azumi, T. Ohtsuka and N. Sato, Corrosion Sci. 31 (1990) 715.

    Article  CAS  Google Scholar 

  86. 85 K. Azumi, T. Ohtsuka and N. Sato, Nippon Kinzoku Gakai-shi (Bulletin of JIM), 53 (1989) 479.

    Google Scholar 

  87. 86 H. J. Rieger and W. J. Plieth, Werkstoffe und Korrosion 39 (1988) 603.

    Article  CAS  Google Scholar 

  88. 87 P. C. Searson, R. M. Latanision, and U. Stimming, J. Electrochem. Soc. 135 (1988) 1358.

    Article  CAS  Google Scholar 

  89. 88 R. Schmuki, M. Buchler, S. Virtanen, H. Bohni, R. Muller, and L. J. Gauckler, J. Electrochem. Soc. 142 (1995) 3336.

    Article  CAS  Google Scholar 

  90. 89 U. Stimming, in Passivity of Metals and Simiconductors, Ed. by M. Froment, Elsevier Science Publ., Amesterdam, 1983, p. 477.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Buisness Media, LLC

About this chapter

Cite this chapter

Ohtsuka, T. (2012). 2 Passive Oxide Films on Iron by In-Situ Detection of Optical Techniques. In: Pyun, SI., Lee, JW. (eds) Progress in Corrosion Science and Engineering II. Modern Aspects of Electrochemistry, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5578-4_2

Download citation

Publish with us

Policies and ethics