Skip to main content

1 Advances in the Study of Electrochemical and Corrosion Phenomena in High Subcritical and in Supercritical Aqueous Solutions

  • Chapter
  • First Online:
Progress in Corrosion Science and Engineering II

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 47))

  • 1620 Accesses

Abstract

Supercritical Water Oxidation (SCWO) is a promising technology for destroying highly toxic organic waste (including physiological agents) and for reducing the volume of low-level nuclear waste. For example, SCWO has been chosen by the US Army to destroy chemical agents, such as VX hydrolysate (product obtained by hydrolyzing the chemical agent VX with caustic) and a facility for meeting this goal is now operating in Newport, Indiana. However, other chemical agents as listed in Table 1 are scheduled to be treated in a similar manner. Note that the various agents contain sulfur, phosphorous, fluorine, and nitrogen (in the form of cyanide), so that complete oxidation is expected to produce the oxyacids and/or (depending upon the pH) oxyanions of these elements. The US Navy has also explored SCWO for destroying shipboard waste, including oils and greases, solvents, and paints. Various pilot plant commercial facilities have been built in the United States, Europe, and Japan with the goal of demonstrating the efficacy of the method for destroying resilient organic waste. A variant of SCWO that operates under less severe conditions has been developed by SRI International in the form of Assisted Hydrothermal Oxidation (AHO). This technology is now offered on a commercial basis by Mitsubishi Heavy Industries, who operate a commercial pilot plant in Nagasaki, Japan. Given the increasing sensitivity of regulatory agencies and the general public to toxic waste, there is little doubt that the commercial and governmental application of SCWO will expand rapidly in the foreseeable future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1 B. Mitton, Supercritical Water – Materials Challenges, 17th ICC Meeting, Las Vegas, NV, Oct. 7-11, 2008.

    Google Scholar 

  2. 2 G. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E. A. West, T. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, and C. Pister, J. Nucl. Mat., 371 (2007) 1.

    Article  CAS  Google Scholar 

  3. 3 D. D. Macdonald and L. B. Kriksunov, Electrochim. Acta, 47, (2001) 775.

    Article  CAS  Google Scholar 

  4. 4 D. D. Macdonald, et al., “Supercritical Water Oxidation Studies: Understanding the Chemistry and Electrochemistry of SCWO Systems”, Pennsylvania State University Final Report to the US Army Research Office, Grant Nos. DAAL 03-92-G-0397 and DAAH 04-93-G-0150, Feb. 1997.

    Google Scholar 

  5. 5 L. B. Kriksunov and D. D. Macdonald, Corrosion, 53 (1997) 605.

    Article  CAS  Google Scholar 

  6. 6 D. D. Macdonald, B. G. Pound, and R. P. Singh “Extension of Potential-pH Diagrams to Concentrated Aqueous Solutions”. Proc. Symp. on Equilib. Diagrams and Localized Corrosion. Proc. Honoring Prof. Marcel Pourbaix on his Eightieth Birthday, 84-2: 69, edited by R. P. Frankenthal and J. Kruger. The Electrochemical Society, Inc., Pennington, N.J. Pennington, NJ, 1984.

    Google Scholar 

  7. 7 G. W. Morey, Econ. Geol., 52 (1957) 225.

    Article  CAS  Google Scholar 

  8. 8 M. Hodes, P. A. Marrone, G. T. Hong, K. A. Smith, J. W. Tester, J. Supercritical Fluids, 29 (2004) 265.

    Article  CAS  Google Scholar 

  9. 9 L. B. Kriksunov and D. D. Macdonald, “Measurement and Standardization of pH in Supercritical Aqueous Systems”, Proc. Symp. High Temp. Press. Soln. Chem., Int. Conf. Pacific Basin Chem. Socs., PACIFICHEM ‘95, Amer. Chem. Soc., Washington, DC, 1995.

    Google Scholar 

  10. 10 D. D. Macdonald and L. B. Kriksunov, “Critical Issues in the Supercritical Water Oxidation of Army Toxic Waste,” Proc. Symp. Emerging Technols. Hazardous Waste Manag. VII, D. W. Tedder (Ed.), ACS Meeting, Atlanta, GA, 1995, (Amer. Chem. Soc., Washington, DC), pp. 1280–1283.

    Google Scholar 

  11. 11 S. N. Lvov, H. Gao, D. Kuznetsov, I Balachov and D. D. Macdonald, Fluid Phase Equilibria, 150-1 (1998) 515.

    Google Scholar 

  12. 12 S. N. Lvov, X. Y. Zhou, S. M. Ulyanov, and A. V. Bandura, Chem. Geol., 167 (2000) 105.

    Article  CAS  Google Scholar 

  13. 13 R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworths, London, 1959.

    Google Scholar 

  14. 14 J. D. Frantz and W. L. Marshall, Amer. J. Sci., 284 (1984) 651.

    Article  CAS  Google Scholar 

  15. 15 J. W. Johnson, E. H.Oelkers, and H. C. Helgeson, Computers ) Geosciences, 18 (1992) 899.

    Article  Google Scholar 

  16. 16 NIST Properties of Water Software, National Institute of Science and Technology, Gaithersburg, MD, 1997.

    Google Scholar 

  17. 17 ASME Steam Tables, Thermodynamic and Transport Properties of Steam, 6th Edition, ASME, NY, 1993.

    Google Scholar 

  18. 18 D. D. Macdonald, L. B. Kriksunov. Corrosion, 34 (1978) 75.

    CAS  Google Scholar 

  19. 19 R. E. Mesmer, C. F. Baes, Jr. Inorganic Chemistry 10 (1971) 2290.

    CAS  Google Scholar 

  20. 20 R.E. Mesmer, C.F. Baes, Jr. and F.H. Sweeton. Inorganic Chemistry, 11 (1972) 537.

    Article  CAS  Google Scholar 

  21. 21 R. E. Mesmer, C. F. Baes, Jr. J. Soln. Chem., 3 (1974) 307.

    Article  CAS  Google Scholar 

  22. 22 F. H. Sweeton, R. E. Mesmer, C. F. Baes, Jr. J. Phys. E: Sci. Instrum., 6 (1973) 165.

    Article  CAS  Google Scholar 

  23. 23 B. F. Hitch, R. E. Mesmer. J. Soln. Chem., 5 (1976) 667.

    Article  CAS  Google Scholar 

  24. 24 R. E. Mesmer, H. F. Holmes. J. Soln. Chem., 21 (1992) 725.

    Article  CAS  Google Scholar 

  25. 25 D. A. Palmer, D. J. Wesolowski. Geochimica et Cosmochimica Acta, 56 (1992) 1093.

    Article  CAS  Google Scholar 

  26. 26 D. A. Palmer, D. J. Wesolowski. Geochimica et Cosmochimica Acta, 57 (1993) 2929.

    Article  CAS  Google Scholar 

  27. 27 D. J. Wesolowshi, D. A. Palmer, R. E. Mesmer, Water-Rock Interaction, 51 (1995)

    Google Scholar 

  28. 28 P. Benezeth, D. A. Palmer, D. J. Wesolowski. Geothermics, 26 (1997) 465.

    Article  CAS  Google Scholar 

  29. 29 P. C. Ho, D. A. Palmer, R. H. Wood. J. Phys. Chem., B 104 (2000) 12084.

    Google Scholar 

  30. 30 P. Benezeth, D. A. Palmer, D. J. Wesolowski. J. Chem. Eng. Data, 46 (2001) 202.

    Article  CAS  Google Scholar 

  31. 31 P. Benezeth, D. J. Wesolowski D. A. Palmer. J. Chem. Eng. Data, 48 (2003) 171.

    Google Scholar 

  32. 32 D. D. Macdonald, P. Butler and D. Owen. Can. J. Chem., 51 (1973) 2590.

    Article  CAS  Google Scholar 

  33. 33 D. D. Macdonald, P. Butler,and D. Owen. J. Phys. Chem., 77 (1973) 2474.

    Article  CAS  Google Scholar 

  34. 34 D. D. Macdonald, D. Owen. Can. J. Chem.,51 (1973) 2747.

    Google Scholar 

  35. 35 D. W. Shoesmith, L. Woon. Can. J. Chem., 54 (1976) 3553.

    Article  CAS  Google Scholar 

  36. 36 G. Giasson, P. H. Tewari. Can. J. Chem., 56 (1978) 435.

    Article  CAS  Google Scholar 

  37. 37 Y. Matsushima, A. Matsunaga, K. Sakai, A. Okuwaki. Bull. Chem. Soc. Japan., 61 (1988) 4259.

    Article  CAS  Google Scholar 

  38. 38 B. A. Bilal, E. Mueller. Z. Naturforsch., 48A (1993) 1073.

    Google Scholar 

  39. 39 L. W. Niedrach. J. Electrochem. Soc., 127 (1980) 2122.

    Article  CAS  Google Scholar 

  40. 40 T. Tsuruta, D. D. Macdonald. J. Electrochem. Soc., 129 (1982) 1202.

    Article  Google Scholar 

  41. 41 M. J. Danielson, O. H. Koski, J. Meyers. J. Electrochem. Soc., 132 (1985) 296.

    Article  CAS  Google Scholar 

  42. 42 M. J. Danielson, O. H. Koski, J. Meyers. J. Electrochem. Soc., 132 (1985) 2037.

    Article  CAS  Google Scholar 

  43. 43 W. L. Bourcier, G. C. Ulmer, H. L. Barnes. Hydrothermal Experimental Techniques, Wiley-Interscience, New York, 1987, p. 157.

    Google Scholar 

  44. 44 L. W. Niedrach. Science, 207 (1980) 1200.

    Article  CAS  Google Scholar 

  45. 45 L. W. Niedrach. Patent Number, 4264424 (General Electric, 1981).

    Google Scholar 

  46. 46 L. W. Niedrach. J. Electrochem. Soc., 212 (1982) 672.

    Google Scholar 

  47. 47 L. W. Niedrach. Adv. Ceram. Sciences, 12 (1984) 672.

    CAS  Google Scholar 

  48. 48 D. D. Macdonald, S. Hettiarachchi, S. J. Lenhart. J. Solut. Chem., 17 (1988) 719.

    Article  CAS  Google Scholar 

  49. 49 S. Hettiarachchi, D. D. Macdonald. J. Electrochem. Soc., 131 (1984) 2206.

    Article  CAS  Google Scholar 

  50. 50 D. D. Macdonald, S. Hettiarachchi, H. Song, K. Makela, R. Emerson, M. Haim. J. Solut. Chem., 21 (1992) 849.

    Article  CAS  Google Scholar 

  51. 51 S. Hettiarachchi, K. Makela, H. Song, D. D. Macdonald. J. Electrochem. Soc., 139 (1992) L3-L4.

    Article  CAS  Google Scholar 

  52. 52 L. B. Kriksunov, D. D. Macdonald. ASME Heat Transfer Div Publ HTD, Vol. 317-2, ASME Heat Transfer Division, 1995, p. 271.

    Google Scholar 

  53. 53 S. N. Lvov, G. Perboni, M. Broglia. Physical Chemistry of Aqueous Systems, Begell House, New York, 1995, p. 441.

    Google Scholar 

  54. 54 D. D. Macdonald, L. B. Kriksunov. in Proc. Symp. Emerging Technols. Hazardous Waste Manaf. VII, Ed. by. D.W. Tedder, Atlanta, GA, 1995, p. 1280.

    Google Scholar 

  55. 55 L. B. Kriksunov, D. D. Macdonald. in Proc. Symp. High Temp. Press. Soln. Chem., Int. Conf. Pacific Basin Chem. Socs., PACIFICHEM '95, Washington D. C., 1995.

    Google Scholar 

  56. 56 S. N. Lvov, G. Perboni, M. Broglia, Physical Chemistry of Aqueous Systems 441 (Begell House, New York, 1995).

    Google Scholar 

  57. 57 D. D. Macdonald, L. B. Kriksunov, in Proc. Symp. Emerging Technols. Hazardous Waste Manuf. VII, Ed. by D. W. Tedder, Atlanta, GA, 1995, p. 1280.

    Google Scholar 

  58. 58 L. B. Kriksunov and D. D. Macdonald, in Proc. Symp. High Temp. Press. Soln. Chem., Int. Conf. Pacific Basin Chem. Socs., PACIFICHEM’95, Washington, D.C., 1995.

    Google Scholar 

  59. 59 K. Ding, W.E. Seyfried, Jr., Geochimica et Cosmochimica Acta, 59 (1995) 4769.

    Article  CAS  Google Scholar 

  60. 60 K. Eklund, S. N. Lvov, D.D. Macdonald. J. Electroa. Chem., 437 (1997) 99.

    Article  CAS  Google Scholar 

  61. 61 R. Fernandez-Prini, R. Crovetto. J. Phys. Chem. Ref. Data, 18 (1989) 1231.

    Article  CAS  Google Scholar 

  62. 62 N. Kishima, H. Sakai. Earth Planetary Sci. Lett., 67 (1984) 79.

    Article  CAS  Google Scholar 

  63. 63 K. Ding, W. E. Seyfried, Jr. J. Soln. Chem., 25 (1996) 421.

    Article  CAS  Google Scholar 

  64. 64 S. N. Lvov, H. Gao, D. D. Macdonald. in Proc. Fifth Int. Symp. Hydrothermal Reacts., Ed. by D. A. Palmer and D. Wesolowski, ORNL, U.S. Dept. of Energy, Gatlinburg, TN, 1997, p. 146.

    Google Scholar 

  65. 65 S. N. Lvov, H. Gao, D. D. Macdonald. J. Electroa. Chem., 443 (1998) 186.

    Article  CAS  Google Scholar 

  66. 66 S. N. Lvov, X. Y. Zhou, D. D. Macdonald. J. Electroanal. Chem., 463 (1999) 146.

    Article  CAS  Google Scholar 

  67. 67 K. Sue, M. Uchida, T. Usami, T. Adschiri, K. Arai. J. Supercritical Fluids, 28 (2004) 287; K. Sue, M. Uchida, T. Adschiri, K. Arai. J. Supercritical Fluids, 31 (2004) 295.

    Google Scholar 

  68. 68 M. H. Lietzke. J. Amer. Chem. Soc., 77 (1955) 1344.

    Article  CAS  Google Scholar 

  69. 69 R. S. Greeley, W. T. Smith, R. W. Stoughton, M. H. Lietzke. J. Phys. Chem., 64 (1960) 652.

    CAS  Google Scholar 

  70. 70 R. S. Greeley, W. T. Smith, M. H. Lietzke, and R. W. Sroughton. J. Phys. Chem., 61 (1960) 1445.

    Article  Google Scholar 

  71. 71 M. H. Lietzke, H. B. Hupf, R. W. Stoughton. J. Phys. Chem., 69 (1965) 2395.

    Article  CAS  Google Scholar 

  72. 72 D. D. Macdonald. in Modern Aspects of Electrochemistry, Ed. by J. O'M. Bockris and B. E. Conway, Plenum, NY, 1975, p. 141.

    Google Scholar 

  73. 73 ????

    Google Scholar 

  74. 74 B. Case, G. J. Bignold. J. Appl. Electrochem., 1 (1971) 141.

    Article  CAS  Google Scholar 

  75. 75 K. Ding., W. E. Seyfried, Jr., Science, 272 (1996) 1634.

    Google Scholar 

  76. 76 K. Ding, W. E. Seyfried, Jr., Geochim. Cosmochim. Acta, 56 (1992) 3681.

    Article  CAS  Google Scholar 

  77. 77 G. B. Naumov, B. N. Ryzhenko, I. L. Khodakovsky. Handbook of Thermodynamic Data, Ed. by I. Barnes and V. Speltz, U.S. Geological Survey, Menlo Park, CA, 1974.

    Google Scholar 

  78. 78 J. C. Tanger IV, H. C. Helgeson. Am. J. Sci., 288 (1988) 19.

    CAS  Google Scholar 

  79. 79 D. A. Sverjensky, J. J. Hemley, W. M. D'Angelo. Geochim. Cosmochim. Acta, 55 (1991) 988.

    Google Scholar 

  80. 80 E.L. Shock, E. H. Oelkers, J. W. Johnson, D. A. Sverjensky, H. C. Helgeson. J Chem. Soc. Faraday Tran., 88 (1992) 803.

    Article  CAS  Google Scholar 

  81. 81 J. V. Dobson, M. N. Dagless, H. R. Thirsk. J. Chem. Soc., Faraday Trans. i., 68 (1972) 739.

    Google Scholar 

  82. 82 J. V. Dobson, M. N. Dagless, and H. R. Thirsk. J. Chem. Soc., Faraday Trans.i 68 (1972) 764.

    Google Scholar 

  83. 83 J. V. Dobson, B. R. Chapman, and H. R. Thirsk, in International Conference on High Temperature High Pressure Electrochemistry in Aqueous Solutions(NACE), University of Survey, 1973.

    Google Scholar 

  84. 84 D. D. Macdonald, P. R. Wentrcek, A. C. Scott. J. Electrochem. Soc., 127 (1980) 1745.

    Article  CAS  Google Scholar 

  85. 85 Z. Nagy, R. M. Yonco. J. Electrochem. Soc., 133 (1986) 2232.

    Article  CAS  Google Scholar 

  86. 86 S. Hettiarachchi, D. D. Macdonald. J. Electrochem. Soc., 134 (1987) 1307.

    Article  CAS  Google Scholar 

  87. 87 P Jayaweera, T. O. Passell, and P. J. Millett, USA Patent 5425871.

    Google Scholar 

  88. 88 D. de Jones, H. C. Mastrson. Adv. Corr. Sci. Tech., 1 (1970) 1.

    Google Scholar 

  89. 89 D. D. Macdonald, D. Owen. J. Electrochem. Soc., 120 (1973) 317.

    Article  CAS  Google Scholar 

  90. 90 D. D. Macdonald, A. C. Scott, P. Wentrcek. J. Electrochem. Soc. Electrochemical Science and Technology, 126 (1979) 908.

    CAS  Google Scholar 

  91. 91 D. D. Macdonald, S. Hettiarachchi, S. J. Lenhart, in Proc. 1987 Symposium on Chemistry in High Temperature Water, EPRI Report NP-6005, Brigham Young University, Provo, Utah, 1990.

    Google Scholar 

  92. 92 S. Hettiarachchi, S. J. Lenhart, D. D. Macdonald, in Proc. 3rd Int'l. Symp. Envir. Degrad. Mat. Nucl. Power Systs. -Water Reactors Ed. by G. J. Theus and J. R. Weeks, Met. Soc. AIME, Warrendale, PA, 1988, p. 165.

    Google Scholar 

  93. 93 D. D. Macdonald, S. Hettiarachchi, R. Emerson, K. Makela, H. Song, M. B. Haim. in Proc. Symp. on Chemistry in HIgh-Temperature Aqueous Solutions, Brigham Young University, Provo, UT, 1991, C3a-1.

    Google Scholar 

  94. 94 M. J. Danielson, Corrosion 39 (1983) 202.

    Article  CAS  Google Scholar 

  95. 95 S. N. Lvov, X.Y. Zhou, Mineralogical Magazine, 62A (1998) 929.

    Article  CAS  Google Scholar 

  96. 96 A. J. Bard, L.R. Faulkner in Electrochemical Methods Fundamentals and Applications, 2nd Edition, John Wiley ) Sons, Inc., 2000, p. 63.

    Google Scholar 

  97. 97 T. Tsuruta, D. D. Macdonald. J. Electrochem. Soc., 129 (1982) 1221.

    Article  CAS  Google Scholar 

  98. 98 H. W. Harper. J. Phys. Chem., 89 (1985) 1659.

    Article  CAS  Google Scholar 

  99. 99 R. Haase, Thermodynamics of Irreversible Processes, Addison-Wesley, Reading, MA, 1969.

    Google Scholar 

  100. 100 S. N. Lvov, D. D. Macdonald, J. Electroanal. Chem., 403 (1996) 25.

    Article  Google Scholar 

  101. 101 G. R. Engelhardt, S. N. Lvov, D. D. Macdonald, J. Electroanal. Chem., 429 (1997) 193.

    Article  CAS  Google Scholar 

  102. 102 D. D. Macdonald, A. C. Scott, and P. R. Wentrcek, J. Electrochem. Soc., 126 (1979) 1618.

    Article  CAS  Google Scholar 

  103. 103 L. S. Hwang, A. Boateng, and D. D. Macdonald, in Proc. Symp. Corr. Batteries and Fuel Cells and Corr. Solar Energy Systs, Ed. by C. J. Johnson and S. L. Pohlman, The Electrochemical Society, Inc., Pennington,NJ, 1983, p. 492.

    Google Scholar 

  104. 104 N. Akinfiev, S.N. Lvov, D.D. Macdonald. Comput. Geosci. (in press).

    Google Scholar 

  105. 105 A. S. Quist, W. L. Marshall, J. Phy. Chem.,69 (1965) 2984.

    Google Scholar 

  106. 106 Y. D. Rakhmilevich, I. A. Dibrov, S. N. Lvov. Russ. J. Phys. Chem., 61 (1987) 2391.

    CAS  Google Scholar 

  107. 107 S. N. Lvov, A. Marcomini, M. M. Suprun, in Proc. 4th Int. Sym. On Hydrothermal

    Google Scholar 

  108. Reactions, Ed. by M. Cuney and M. Cathelineau, Nancy, 1993, p. 135.

    Google Scholar 

  109. 108 S. N. Lvov, X. Y. Zhou, G. C. Ulmer, H. L. Barnes, D. D. Macdonald, S. M. Ulyanov, L. G. Benning, D. E. Grandstaff, M. Manna, and E. Vicenzi. Chemical Geology, 198 (2003) 141.

    Article  CAS  Google Scholar 

  110. 109 K. Sue, K. Murata, Y. Matsuura, M. Tsukagoshi, T. Adschiri, K. Arai. Rev. Sci. Instrum., 72 (2001) 4442.

    Article  CAS  Google Scholar 

  111. 110 K. Sue, K. Murata, Y. Matsuura, M. Tsukagoshi, T. Adschiri, K. Arai. Fluid Phase Equilib., 194-197 (2002) 1097.

    Article  Google Scholar 

  112. 111 D. D. Macdonald, S. Hettiarachchi, H. Song, K. Makela, R. Emerson and M. Ben-Haim, J. Soln. Chem., 21(1992) 849.

    Article  CAS  Google Scholar 

  113. 112 M. J. Danielson, O. H. Koski and J.Myero, J. Electrochem. Soc., 132 (1985) 296; 132 (1985) 2037.

    Google Scholar 

  114. 113 S. N. Lvov, X. Y. Zhou, S. M. Ulyanov, H. Gao and D. D. Macdonald, “Potentiometric Measurement of Association Constant and pH in HCL(aq) High Temperature Solutions”, in Steam, Water, and Hydrothermal Systems: Physics and Chemistry Meeting the Needs of Industry, Ed. by P. R. Tremaine, P. G. Hill, D. E. Irish, and P. V. Palakrishnan, NRC Press, Ottawa, 2000, pp. 653-660.

    Google Scholar 

  115. 114 D. D. Macdonald, I. Balachov and G. R. Engelhardt, Power Plant Chemistry, 1 (1999) 9.

    CAS  Google Scholar 

  116. 115 L. B. Kriksunov, C. Liu and D.D. Macdonald. “Oxygen, Hydrogen and Redox Potential Combination Sensors for Supercritical Aqueous Systems,” Proc. 1st Int’l. Workshop Supercritical Water Oxidation, Amelia Island Plantation, FL, February, 1995.

    Google Scholar 

  117. 116 L. B. Kriksunov, D. D.Macdonald and P. J.Millett, J. Electrochem. Soc., 141 (1994) 3002.

    Article  CAS  Google Scholar 

  118. 117 G. S. Was, S. Teysseyre and Z. Jiao, “Corrosion of Austenitic Alloys in Supercritical Water,” Corrosion Science Section, Vol. 26, No. 11, (2006).

    Google Scholar 

  119. 118 D. D. Macdonald, J. Electrochem. Soc., 139 (1992) 3434

    Article  CAS  Google Scholar 

  120. 119 E. C. Potter and G. M. W. Mann, “Oxidation of Mild Steel in High Temperature Aqueous Systems,“ Proc. 1st Int. Congr. Met. Corros., Butterworths, London, Int. Union Pure Appl. Chem., 1961, p. 417.

    Google Scholar 

  121. 120 A. G. Crouch and J. Robertson, Acta Metall. Mater., 38 (1990) 2567

    Article  CAS  Google Scholar 

  122. 121 J. Davenport, L. J. Oblonsky, M. P. Ryan, and M. F. Toney, "The Structure of the Passive Film That Forms on iron in Aqueous Environments," J.Electrochem. Soc.. 147 (2000) 2162.

    Article  CAS  Google Scholar 

  123. 122 P. Ampornrat and G. S. Was, “Oxidation of ferritic-martensitic alloys T91, HCM12A, and HT-9 in supercritical water”, Journal of Nuclear Materials 371 (2007) 1.

    Article  CAS  Google Scholar 

  124. 123 Y. Chen, K. Sridharan, T. R. Allen, S. Ukai, “Microstructural examination of oxide layers formed on an oxide dispersion strengthened ferritic steel exposed to supercritical water,” Journal of Nuclear Materials 359 (2006) 50-58.

    Article  CAS  Google Scholar 

  125. 124 A. T. Motta, A. D. Siwy, J.M. Kunkle, J. B. Bischoff, R. J. Comstock, Y. Chen, and T. R. Allen, “Microbeam Synchrotron Radiation Diffraction and Fluorescence Study of Oxide Layers Formed on 9Cr ODS Steel in Supercritical Water’.

    Google Scholar 

  126. 125 A. Yilmazbayhan, Marcelo Gomes da Silva, Arthur Motta, Hyun-Gil Kim, Yong Hwan Jeong, Jeong-Yong Park, Robert Comstock, Barry Lai, Zhoughou Cai, “Characterization of Oxides Formed on Model Zirconium Alloys in 360oC Water Using Micro-Beam Synchrotron Radiation”, (2005)

    Google Scholar 

  127. 126 Q. Peng, E. Gartner, J. T. Busby, A. T.Motta, and G. S. Was, “Corrosion Behavior of Model Zirconium Alloys in Deaerated Supercritical Water at 500oC,” Corrosion Science Section, 63 (6) (2007).

    Google Scholar 

  128. 127 Y. H. Jeong, J. Y. Park, H. G. Kim, J. T. Busby, E. Gartner, M. Atzmon, G. S. Was, R. J. Comstock, Y. S. Chu, M. Gomes da Silva, A. Yilmazbayhan and A. T. Motta, “Corrosion of Zirconium-Based Fuel Cladding Alloys in Supercritical Water”, (2005).

    Google Scholar 

  129. 128 A. T. Motta, A. D. Siwy, J. K. Kunkle, J. M. Bischoff, R. J. Comstock, Y. Chen, and T. R. Allen, “Microbeam Synchrotron Radiation Diffraction and Fluorescence Study of Oxide Layers Formed on 9Cr ODS Steel in Supercritical Water”, 17th ICC Meeting, Las Vegas, NV, Oct. 7-11, 2008.

    Google Scholar 

  130. 129 X. Y. Guan, T. Zhu, D. D. Macdonald, “Application of electrochemical noise analysis in high subcritical and supercritical aqueous systems”, NACE paper No. 06449 (2006).

    Google Scholar 

  131. 130 C. Liu, D. D. Macdonald, E. Medina, J. J. Villa and J. M. Bueno, “Probing Corrosion Activity in High Subcritical and Supercritical Water through Electrochemical Noise Analysis,” Corrosion, 50 (1994) 687.

    Article  CAS  Google Scholar 

  132. 131 K. Wagner, W. Traud, Z. Elektrochem 44 (1938) 391.

    CAS  Google Scholar 

  133. 132 N. Akiya, P. E. Savage, Chem. Rev. 102 (2002) 2725.

    Article  CAS  Google Scholar 

  134. 133 L. B. Kriksunov, D. D. Macdonald; “Corrosion in Supercritical Water Oxidation Systems: A Phenomenological Analysis,” J. Electrochem. Soc . 142, 1995, 4069.

    Article  Google Scholar 

  135. 134 X.Y. Zhou, S.N. Lvov, X.J. Wei, L.G. Benning, D.D. Macdonald, “Quantitative Evaluation of General Corrosion of Type 304 Stainless Steel in Subcritical and Supercritical Aqueous Solutions via Electrochemical Noise Analysis”, Corrosion Science, 44 (2002) 841.

    Article  CAS  Google Scholar 

  136. 135 W. P. Iverson, J. Electrochem. Soc., 115 (1968) 617.

    Article  CAS  Google Scholar 

  137. 136 J. L. Dawson, “Electrochemical Noise Measurement for Corrosion Applications,” ASTM Publication Code Number (PCN) 04-012770-27, p.3-35

    Google Scholar 

  138. 137 R. A. Cottis, “Interpretation of Electrochemical Noise Data”, Corrosion, 57 (2001) 265.

    Article  CAS  Google Scholar 

  139. 138 F. Mansfeld and H. Xiao, “Electrochemical Noise Analysis of Iron Exposed to NaCl Solutions of Different Corrosivity”, J. Electrochem. Soc., 140 (1993) 2205.

    Article  CAS  Google Scholar 

  140. 139 D. D. Macdonald and L. Chen, unpublished data (1982).

    Google Scholar 

  141. 140 X.-Y. Guan and D. D. Macdonald, Corrosion 65 (2009) 376

    Article  CAS  Google Scholar 

  142. 141 P. Botella, C. Frayret, T. Jaszay, and M. H. Delville; “Experimental study, via current-potential curves, of the anodic behavior of Alloy C-276 and T60 titanium in chlorinated and oxygenated aqueous media under sub- to supercritical conditions” J. of Supercritical Fluids, 25 (2003) 269.

    Google Scholar 

  143. 142 X.-Y. Guan and D. D. Macdonald, Corrosion 65 (2009) 427.

    Article  Google Scholar 

  144. 143 K. J. Laidlaw, Chemical Kinetics, Harper ) Row, NY, 3rd Ed., 1987.

    Google Scholar 

  145. 144 D. D Macdonald, “Effect of Pressure on the Rate of Corrosion of Metals in High Subcritical and Supercritical Aqueous Systems” J. Supercritical Fluids, 30 (2004) 375.

    Google Scholar 

  146. 145 S. D. Iyer, and M. T. Klein, “Effect of pressure on the rate of butyronitrile hydrolysis in high-temperature water” J. Supercritical Fluids, 10 (1997) 191.

    Article  CAS  Google Scholar 

  147. 146 B. Wu, M. T. Klein, and S. I. Sandler, “Solvent effects on reactions in supercritical fluids” Ind. Eng. Chem. Res., 30 (1991) 822.

    Article  CAS  Google Scholar 

  148. 147 D. D. Macdonald and J. B. Hyne. “The Pressure Dependence of Benzyl Chloride Solvolysis in Aqueous Acetone and Aqueous DimethylSulfoxide.” Can. J. Chem., 48 (16) (1970) 2494.

    Article  CAS  Google Scholar 

  149. 148 ???

    Google Scholar 

  150. 149 D. D. Macdonald, D. D., P. C. Lu, M. Urquidi-Macdonald, and T. K. Yeh, “Theoretical Estimation of Crack Growth Rates in Type 304 Stainless Steel in BWR Coolant Environments.” Corrosion, 52(10), 768-785 (1996).

    Google Scholar 

  151. 150 D. D. Macdonald and G. Cragnolino, “The Critical Potential for the IGSCC of Sensitized Type 304 SS in High Temperature Aqueous Systems”. Proc. 2nd Int’l. Symp. Env. Deg. Mat. Nucl. Power Syst. - Water Reactors. Monterey, CA, September 9-12, 1985.

    Google Scholar 

  152. 151 Q. J. Peng, J. Kwon, and T. Shoji, “Development of a fundamental crack tip strain rate equation and its application to quantitative prediction of stress corrosion cracking of stainless steels in high temperature oxygenated water,” J. Nuc. Mat. 324 (2004) 52.

    Article  CAS  Google Scholar 

  153. 152 M. P. Manahan, Sr., D. D. Macdonald and A. J. Peterson, Jr., Corros. Sci., 37 (1995) 189.

    Article  CAS  Google Scholar 

  154. 153 A. Wuensche and D. D. Macdonald, Corrosion 2001, Paper No. 01236, Houston, TX, 2001.

    Google Scholar 

  155. 154 D. D. Macdonald and M. Urquidi-Macdonald, "The Electrochemistry of Nuclear Reactor Coolant Circuits," Encyclopedia of Electrochemistry, Ed. by A.J. Bard and M. Stratmann, Vol. 5; “Electrochemical Engineering,” Ed. by Digby D. Macdonald and Patrik Schmuki, Wiley-VCH Verlag GmbH ) Co. KGaA, Weinheim, 2007, pp. 665-720.

    Google Scholar 

  156. 155 D. D. Macdonald, “Viability of Hydrogen Water Chemistry for Protecting In-Vessel Components of Boiling Water Reactors,” Corrosion, 48(3) (1992) 194.

    Article  CAS  Google Scholar 

  157. 156 M. Vankeerbergen and D. D. Macdonald, Corros. Sci., 44 (2002) 1425.

    Article  Google Scholar 

  158. 157 S. Hettiarachchi, “BWR SCC mitigation experiences with hydrogen water chemistry,” Proceedings of the Twelfth International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 2005, Proceedings of the Twelfth International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors., NACE International, Houston, TX, 2005, p 685-701.

    Google Scholar 

  159. 158 D. M. Bartels, K. Takahashi, J. A. Cline, T. W. Marin and C. D. Jonah, “Pulse Radiolysis of Supercritical Water. 3. Spectrum and Thermodynamics of the Hydrated Electron”, J. Phys. Chem. A, 109 (2004) 1299-1307.

    Article  CAS  Google Scholar 

  160. 159 G. Wu, Y. Katsumura, Y. Muroya, X. Li, Y. Terada, “Pulse radiolysis of high temperature and supercritical water: experimental setup and e-observation” Radiation Physics and Chemistry, 60 (2001) 395-398.

    Article  CAS  Google Scholar 

  161. 160 K. Ghandi and P.W. Percival, “Prediction of Rate Constants of Reactions of the Hydroxyl Radical in Water at High Temperatures and Pressures,” The Journal of Physical Chemistry A, 107(17) (2003).

    Google Scholar 

  162. 161 J. Elliot, “Rate Constants and G-Values for the Simulation of the Radiolysis of Light Water Over the Range 0-300 oC”, Atomic Energy of Canada Ltd (AECL) Report No. 11073, Oct., 1994.

    Google Scholar 

  163. 162 T. W. Marin, J. A. Cline, K. Takahashi D. M. Bartels and C. D. Jonah, “Pulse Radiolysis of Supercritical Water. 2. Reaction of Nitrobenzene with Hydrated Electrons and Hydroxyl Radicals,” J. Phys. Chem. A, 106 (2002) 12270.

    Google Scholar 

  164. 163 M. Lin, Y. Katsumura, Y. Muroya, H. He, G. Wu, Z. Han, T. Miyazaki and H. Kudo, “Pulse Radiolysis Study on the Estimation of Radiolytic Yields of Water Decomposition Products in High-Tembperature and Supercritical Water: Use of Methyl Viologen as a Scavenger,” J. Phys. Chem. A, 108 (2004) 8287-8295.

    Article  CAS  Google Scholar 

  165. 164 W. G. Burns and W. R. Marsh, “Radiation Chemistry of High Temperature (300 – 400oC) Water”, J. Chem. Soc. Faraday, 1 77 (1981) 197.

    Google Scholar 

  166. 165 S. Teysseyre and G. S. Was, “Stress Corrosion Cracking of Austenitic Alloys in Supercritical Water”, Corrosion Science Section, (2006).

    Google Scholar 

  167. 166 P. Andresen, Corrosion, 49 (1993) 714.

    Article  CAS  Google Scholar 

  168. 167 D. D. Macdonald, Pure Appl. Chem., 71 (1999) 951.

    Article  CAS  Google Scholar 

  169. 168 L. B. Kriksunov and D. D. Macdonald, J. Electrochem. Soc., 142 (1995) 4069.

    Article  CAS  Google Scholar 

  170. 169 C. Liu, D. D. Macdonald, E. Medina, J. Villa, and J. Bueno, Corrosion, 50(9) (1994) 687.

    Article  CAS  Google Scholar 

  171. 170 X. Y. Zhou, S. N. Lvov, X. J. Wei, L. G. Benning, and D. D. Macdonald, “Measuring Corrosion Rate of Type 304 SS in Subcritical and Supercritical Aqueous Solutions via Electrochemical Noise Analysis”, Corrosion, in preparation (2000).

    Google Scholar 

  172. 171 S. N. Lvov, X. Y. Zhou, and D. D. Macdonald, J. Electroanal. Chem., 463 (1999) 146.

    Article  CAS  Google Scholar 

  173. 172 M. J. Danielson, Corrosion, 39 (1983) 202.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Buisness Media, LLC

About this chapter

Cite this chapter

Macdonald, D.D. (2012). 1 Advances in the Study of Electrochemical and Corrosion Phenomena in High Subcritical and in Supercritical Aqueous Solutions. In: Pyun, SI., Lee, JW. (eds) Progress in Corrosion Science and Engineering II. Modern Aspects of Electrochemistry, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5578-4_1

Download citation

Publish with us

Policies and ethics