Skip to main content

Fundamentals of Optical Communication

  • Chapter
  • First Online:
Coding for Optical Channels

Abstract

The ultimate goal of the optical signal transmission is to achieve the predetermined bit-error ratio (BER) between any two nodes in an optical network. The optical transmission system has to be properly designed in order to provide the reliable operation during its lifetime, which includes the management of key engineering parameters. In this chapter, we describe the key optical components used in contemporary optical communication systems; basic direct detection modulation schemes; and basic coherent detection schemes. This chapter is based on [1–24].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cvijetic M (2004) Optical transmission systems engineering. Artech House, Boston, MA

    Google Scholar 

  2. Ramaswami R, Sivarajan K (2002) Optical networks: a practical perspective, 2nd edn. Morgan Kaufman, San Fransisco, CA

    Google Scholar 

  3. Agrawal GP (2002) Fiber-optic communication systems, 3rd edn. Wiley, New York

    Book  Google Scholar 

  4. Agrawal GP (2004) Lightwave technology: components and devices. Wiley, New York

    Google Scholar 

  5. Agrawal GP (2005) Lightwave technology: telecommunication systems. Wiley, New York

    Google Scholar 

  6. Agrawal GP (2007) Nonlinear fiber optics, 4th edn. Academic, New York

    Google Scholar 

  7. Cvijetic M (1996) Coherent and nonlinear lightwave communications. Artech House, Boston, MA

    Google Scholar 

  8. Keiser G (2000) Optical fiber communications, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  9. Kazovsky L, Benedetto S, Willner A (1996) Optical fiber communication systems. Artech House, Boston, MA

    Google Scholar 

  10. Palais JC (2005) Fiber optic communications, 5th edn. Pearson Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  11. Ramamurthy B (2000) Switches, wavelength routers, and wavelength converters. In: Sivalingam KM, Subramaniam S (eds) Optical WDM networks: principles and practice. Kluwer Academic, New York

    Google Scholar 

  12. Djordjevic IB (2006/2007) ECE 430/530: optical communication systems (lecture notes). University of Arizona, Tuczon, AZ

    Google Scholar 

  13. Kostuk R (2002/2004) ECE 430/530: optical communication systems (lecture notes). University of Arizona, Tuczon, AZ

    Google Scholar 

  14. Djordjevic IB (2007) ECE 632: advanced optical communication systems (lecture notes). University of Arizona, Tuczon, AZ

    Google Scholar 

  15. Yariv A (1997) Optical electronics in modern communications. Oxford University Press, Oxford

    Google Scholar 

  16. Amersfoort M (1998) Arrayed waveguide grating, Application note A1998003. Available at http://www.c2v.nl

  17. Staif M, Mecozzi A, Nagel J (2000) Mean square magnitude of all orders PMD and the relation with the bandwidth of principal states. IEEE Photon Technol Lett 12:53–55

    Article  Google Scholar 

  18. Kogelnik H, Nelson LE, Jobson RM (2002) Polarization mode disperison. In: Kaminow IP, Li T (eds) Optical fiber telecommunications. Academic, San Diego, CA

    Google Scholar 

  19. Foschini GJ, Pole CD (1991) Statistical theory of polarization mode dispersion in single-mode fibers. IEEE/OSA J Lightwave Technol LT-9:1439–1456

    Google Scholar 

  20. Bendelli G et al (2000) Optical performance monitoring techniques. In: Proceedings of ECOC 2000, Munich, vol 4, pp 213–216

    Google Scholar 

  21. Djordjevic IB, Vasic B (2004) An advanced direct detection receiver model. J Opt Commun 25(1):6–9

    Google Scholar 

  22. Winzer PJ, Pfennigbauer M, Strasser MM, Leeb WR (2001) Optimum filter bandwidths for optically preamplified NRZ receivers. J Lightwave Technol. 19:1263–1272

    Article  Google Scholar 

  23. Hui R et al (2004) Technical report: advanced optical modulation formats and their comparison in fiber-optic systems. University of Kansas, Lawrence, KS

    Google Scholar 

  24. Wongpaibool V (2003) Improvement of fiber optic system performance by synchronous phase modulation and filtering at the transmitter. PhD dissertation, Virginia Polytechnic Institute and State University

    Google Scholar 

  25. Sano A, Miyamoto Y (2001) Performance evaluation of prechirped RZ and CS-RZ formats in high-speed transmission systems with dispersion management. IEEE/OSA J Lightwave Technol 19:1864–1871

    Article  Google Scholar 

  26. Proakis JG (2001) Digital communications. McGraw-Hill, Boston, MA

    Google Scholar 

  27. Jacobsen G (1994) Noise in digital optical transmission systems. Artech House, Boston, MA

    Google Scholar 

  28. Hooijmans PW (1994) Coherent optical system design. Wiley, New York

    Google Scholar 

  29. Djordjevic IB (1999) Analysis and optimization of coherent optical systems with the phase-locked loop. PhD dissertation, University of Nis, Serbia

    Google Scholar 

  30. Savory SJ (2008) Digital filters for coherent optical receivers. Opt Express 16:804–817

    Article  Google Scholar 

  31. Djordjevic IB, Xu L, Wang T (2008) PMD compensation in multilevel coded-modulation schemes with coherent detection using BLAST algorithm and iterative polarization cancellation. Opt Express 16(19):14845–14852

    Article  Google Scholar 

  32. Djordjevic IB, Xu L, Wang T (2008) PMD compensation in coded-modulation schemes with coherent detection using Alamouti-type polarization-time coding. Opt Express 16(18):14163–14172

    Article  Google Scholar 

  33. Minkov LL, Djordjevic IB, Xu L, Wang T (2009) IEEE Photon. Technol. Lett. 21(23): 1773–1775

    Article  Google Scholar 

  34. Djordjevic IB, Arabaci M, Minkov L (2009), Next generation FEC for high-capacity communication in optical transport networks. IEEE/OSA J Lightwave Technol 27(16):3518–3530 (Invited Paper)

    Article  Google Scholar 

  35. Djordjevic IB, Xu L, Wang T (2009) Beyond 100 Gb/s optical transmission based on polarization multiplexed coded-OFDM with coherent detection. IEEE/OSA J Opt Commun Netw 1(1):50–56

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Djordjevic .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Djordjevic, I., Ryan, W., Vasic, B. (2010). Fundamentals of Optical Communication. In: Coding for Optical Channels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5569-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5569-2_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5568-5

  • Online ISBN: 978-1-4419-5569-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics