Skip to main content

Introduction

  • Chapter
  • First Online:
Coding for Optical Channels

Abstract

We live in a time officially proclaimed as the information era, which is closely related to Internet technology and characterized by never-ending demands for higher information capacity [1]. Optical transmission links are established around the globe, and the optical fiber connection extends from the global backbone to access networks, all the way down to the curb, building, home, and desk [1–9]. Despite of the Internet “bubble” occurred in the early 2000s, the Internet traffic has been growing at astonishing rate ranging from 75 to 125% per year [6]. Given the recent growth of Internet usage, IPTV, and VoIP, it has become clear that current 10-Gb/s Ethernet rate is insufficient to satisfy the bandwidth demands in near future. For example, Internet2 has announced 2 years ago a capacity upgrade of its next-generation IP network from 10 Gb/s to 100 Gb/s [7]. According to some industry experts, 100-Gb/s transmission is needed by the end of 2009, while 1 Tb/s should be standardized by the year 2012–2013 [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Q-factor is defined as Q = (μ1 − μ0) ∕ (σ1 + σ0), where μ j and σ j (j = 0, 1) represent the mean and the standard deviation corresponding to the bits j = 0, 1.

  2. 2.

    The girth represents the shortest cycle in corresponding bipartite graph representation of a parity-check matrix.

References

  1. Cvijetic M (2004) Optical transmission systems engineering. Artech House, Boston, MA

    Google Scholar 

  2. Ramaswami R, Sivarajan K (2002) Optical networks: a practical perspective, 2nd edn. Morgan Kaufman, San Fransisco, CA

    Google Scholar 

  3. Agrawal GP (2002) Fiber-optic communication systems, 3rd edn. Wiley, New York

    Book  Google Scholar 

  4. Agrawal GP (2004) Lightwave technology: components and devices. Wiley, New York

    Google Scholar 

  5. Agrawal GP (2005) Lightwave technology: telecommunication systems. Wiley, New York

    Google Scholar 

  6. Melle S, Jaeger J, Perkins D, Vusirikala V (2007) Market drivers and implementation options for 100-GbE transport over the WAN. IEEE Appl Pract 45(11):18–24

    Google Scholar 

  7. Internet2 and Level 3 communications to deploy next generation nationwide research network Internet2 press release Available at http://news.internet2.edu/index.cfm

  8. McDonough J (2007) Moving standards to 100 GbE and beyond. IEEE Commun Mag 45(11):6–9

    Article  Google Scholar 

  9. Shieh W, Djordjevic I (2009) OFDM for optical communications. Elsevier, Amsterdam

    Google Scholar 

  10. Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187(4736):493–494

    Article  Google Scholar 

  11. Kao KC, Hockman GA (1966) Dielectric-fiber surface waveguides for optical frequencies. Proc. IEEE 113:1151–1158

    Google Scholar 

  12. Essiambre E-J, Raybon G, Mikkelsen B (2002) Pseudo-linear transmission of high-speed TDM signals at 40 and 160 Gb/s. In: Kaminow IP, Li T (eds) Optical fiber telecommunications IVB. Academic, San Diego, CA, pp 233–304

    Google Scholar 

  13. Djordjevic IB, Minkov LL, Batshon HG (2008) Mitigation of linear and nonlinear impairments in high-speed optical networks by using LDPC-coded turbo equalization. IEEE J Sel Areas Commun, Optical Commun Netw 26(6):73–83

    Article  Google Scholar 

  14. Djordjevic IB, Cvijetic M, Xu L, Wang T (2007) Using LDPC-coded modulation and coherent detection for ultra high-speed optical transmission. IEEE/OSA J Lightwave Technol 25: 3619–3625

    Article  Google Scholar 

  15. Djordjevic IB, Arabaci M, Minkov L (2009) Next generation FEC for high-capacity communication in optical transport networks. IEEE/OSA J Lightwave Technol 27(16):3518–3530 (Invited Paper)

    Article  Google Scholar 

  16. Basch EB, Egorov R, Gringeri S, Elby S (2006) Architectural tradeoffs for reconfigurable dense wavelength division multiplexing systems. IEEE J Sel Top Quantum Electron 12:615–626

    Article  Google Scholar 

  17. Burns P (2003) Software defined radio for 3G. Artech House, Boston, MA

    Google Scholar 

  18. Kenningotn PB (2005) RF and baseband techniques for software defined radio. Artech House, Boston, MA

    Google Scholar 

  19. Mitola J (1995) The software radio architecture. IEEE Commun Mag 33(5):26–38

    Article  Google Scholar 

  20. Winzer PJ, Raybon G, Duelk M (2005) 107-Gb/s optical ETDM transmitter for 100 G Ethernet transport In: Proceedings of European conference on optical communication, Paper no. Th4.1.1, Glasgow, Scotland

    Google Scholar 

  21. Sun H, Wu KT, Roberts K (2008) Real-time measurements of a 40 Gb/s coherent system. Opt Express 16:873–879

    Article  Google Scholar 

  22. Djordjevic IB, Vasic B (2006) 100 Gb/s transmission using orthogonal frequency division multiplexing. IEEE Photon Technol Lett 18(15):1576–1578

    Article  Google Scholar 

  23. Djordjevic IB, Cvijetic M, Xu L, Wang T (2007) Proposal for beyond 100 Gb/s optical transmission based on bit-interleaved LDPC-coded modulation. IEEE Photon Technol Lett 19(12):874–876

    Article  Google Scholar 

  24. Batshon HG, Djordjevic IB, Minkov LL, Xu L, Wang T, Cvijetic M (2008) Proposal to achieve 1 Tb/s per wavelength transmission using 3-dimensional LDPC-coded modulation. IEEE Photon. Technol Lett 20(9):721–723

    Article  Google Scholar 

  25. Batshon HG, Djordjevic IB, Xu L, Wang T (2009) Multidimensional LDPC-coded modulation for beyond 400 Gb/s per wavelength transmission. IEEE Photon Technol Lett 21(16): 1139–1141

    Article  Google Scholar 

  26. Fludger CRS, Duthel T, Van Den Borne D et al (2008) Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission. IEEE/OSA J Lightwave Technol 26:64–72

    Article  Google Scholar 

  27. Djordjevic IB (2009) Adaptive LDPC-coded multilevel modulation with coherent detection for high-speed optical transmission In: Proceedings of IEEE photonics society summer topicals 20–22 July 2009, Newport Beach, CA, Paper no. WC1. 2

    Google Scholar 

  28. Buchali F, Bülow H (2004) Adaptive PMD compensation by electrical and optical techniques. IEEE/OSA J Lightwave Technol 22:1116–1126

    Article  Google Scholar 

  29. Elbers JP, Wernz H, Griesser H et al (2005) Measurement of the dispersion tolerance of optical duobinary with an MLSE-receiver at 10.7 Gb/s In: Proceedings of optical fiber communication conference, Los Angeles, CA, Paper no. OThJ4

    Google Scholar 

  30. McGhan D, Laperle C, Savchenko A, Li C, Mark G, O’Sullivan M (2006) 5120-km RZ-DPSK transmission over G.652 fiber at 10 Gb/s without optical dispersion compensation. IEEE Photon Technol Lett 18:400–402

    Article  Google Scholar 

  31. Djordjevic IB, Vasic B (2006) Orthogonal frequency division multiplexing for high-speed optical transmission. Opt Express 14:3767–3775

    Article  Google Scholar 

  32. Lowery AJ, Du L, Armstrong J (2006) Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems In: Proceedings of optical fiber communication conference, Anaheim, CA, Paper no. PDP 39

    Google Scholar 

  33. Shieh W, Athaudage C (2006) Coherent optical orthogonal frequency division multiplexing. Electron Lett 42:587–589

    Article  Google Scholar 

  34. Shieh W, Yang Q, Ma Y (2008) 107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing. Opt Express 16:6378–6386

    Article  Google Scholar 

  35. Jansen SL, Morita I, Tanaka H (2008) 10x121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF In: Proceedings of optical fiber communication conference, San Diego, CA, Paper no. PDP2

    Google Scholar 

  36. Kobayash T, Sano A, Yamada E (2008) Electro-optically subcarrier multiplexed 110 Gb/s OFDM signal transmission over 80 km SMF without dispersion compensation. Electron Lett 44:225–226

    Article  Google Scholar 

  37. ITU, Telecommunication Standardization Sector. Forward error correction for submarine systems. Technical recommendation G.975/G709

    Google Scholar 

  38. Sab OA (2001) FEC techniques in submarine transmission systems. In: Proceedings of optical fiber communication conference, vol 2, pp TuF1-1–TuF1-3

    Google Scholar 

  39. Pyndiah RM (1998) Near optimum decoding of product codes. IEEE Trans Commun 46: 1003–1010

    Article  MATH  Google Scholar 

  40. Sab OA, Lemarie V (2001) Block turbo code performances for long-haul DWDM optical transmission systems. OFC 3:280–282

    Google Scholar 

  41. Mizuochi T et al (2004) Forward error correction based on block turbo code with 3-bit soft decision for 10 Gb/s optical communication systems. IEEE J Sel Top Quantum Electron 10(2):376–386

    Article  Google Scholar 

  42. Gallager RG (1963) Low density parity check codes. MIT, Cambridge, MA

    Google Scholar 

  43. Mizuochi T et al (2003) Next generation FEC for optical transmission systems. In: Proceedings of optical fiber communication conference (OFC 2003), vol 2, pp 527–528

    Google Scholar 

  44. Djordjevic IB, Milenkovic O, Vasic B (2005) Generalized low-density parity-check codes for optical communication systems. IEEE/OSA J. Lightwave Technol 23:1939–1946

    Article  Google Scholar 

  45. Vasic B, Djordjevic IB, Kostuk R (2003) Low-density parity check codes and iterative decoding for long haul optical communication systems. IEEE/OSA J Lightwave Technol 21:438–446

    Article  Google Scholar 

  46. Djordjevic IB et al (2004) Projective plane iteratively decodable block codes for WDM high-speed long-haul transmission systems. IEEE/OSA J Lightwave Technol 22:695–702

    Article  Google Scholar 

  47. Milenkovic O, Djordjevic IB, Vasic B (2004) Block-circulant low-density parity-check codes for optical communication systems IEEE/LEOS J Sel Top Quantum Electron 10:294–299

    Google Scholar 

  48. Vasic B, Djordjevic IB (2002) Low-density parity check codes for long haul optical communications systems. IEEE Photon Technol Lett 14:1208–1210

    Article  Google Scholar 

  49. Chung S et al (2001) On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Commun Lett 5:58–60

    Article  Google Scholar 

  50. Davey MC, MacKay DJC (1998) Low-density parity check codes over GF(q). IEEE Commun Lett 2:165–167

    Article  Google Scholar 

  51. Mizuochi T (2006) Recent progress in forward error correction and its interplay with transmission impairments. IEEE Sel Top Quantum Electron 12(4):544–554

    Article  Google Scholar 

  52. Mizuochi T, Konishi Y, Miyata Y, Inoue T, Onohara K, Kametani S, Sugihara T, Kubo K, Yoshida H, Kobayashi T, Ichikawa T (2009) Experimental demonstration of concatenated LDPC and RS codes by FPGAs emulation. IEEE Photon Technol Lett 21(18):1302–1304

    Article  Google Scholar 

  53. Djordjevic IB, Vasic B (2006) Multilevel coding in M-ary DPSK/differential QAM high-speed optical transmission with direct detection. IEEE/OSA J Lightwave Technol 24:420–428

    Article  Google Scholar 

  54. Bahl LR, Cocke J, Jelinek F, Raviv J (1974) Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans Inform Theory IT-20(2):284–287

    Article  MATH  MathSciNet  Google Scholar 

  55. ten Brink S (2001) Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Trans Commun 40:1727–1737

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Djordjevic .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Djordjevic, I., Ryan, W., Vasic, B. (2010). Introduction. In: Coding for Optical Channels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5569-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5569-2_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5568-5

  • Online ISBN: 978-1-4419-5569-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics