Skip to main content

Measuring Stroke Volume Using Electrical Impedance Tomography

  • Conference paper
Intensive Care Medicine

Abstract

Electrical impedance tomography (EIT) of the lungs is a bedside-available, noninvasive, and radiation-free medical imaging modality which allows real-time imaging of electrical impedance (i.e., resistance to alternating currents) changes in the thorax [1]. During breathing, lung tissue, with its relatively high impedance oscillations, is the main contributor to these changes which has led to a multitude of applications in monitoring regional lung ventilation [25, for review see 6, 7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barber DC, Brown BH, Freeston IL (1983) Imaging spatial distributions of resistivity using applied potential tomography. Electron Lett 19: 93–95

    Article  Google Scholar 

  2. Frerichs I, Hahn G, Schiffmann H, Berger C, Hellige G (1999) Monitoring regional lung ventilation by functional electrical impedance tomography during assisted ventilation. Ann N Y Acad Sci 873: 493–505

    Article  CAS  PubMed  Google Scholar 

  3. Victorino JA, Borges JB, Okamoto VN, et al (2004) Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med 169: 791–800

    Article  PubMed  Google Scholar 

  4. Meier T, Luepschen H, Karsten J, et al (2008) Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography. Intensive Care Med 34: 543–550

    Article  PubMed  Google Scholar 

  5. Costa ELV, Chaves CN, Gomes S, et al (2008) Real-time detection of pneumothorax using electrical impedance tomography. Crit Care Med 36: 1230–1238

    Article  PubMed  Google Scholar 

  6. Frerichs I (2000) Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities. Physiol Meas 21: R1–R21

    Article  CAS  PubMed  Google Scholar 

  7. Costa ELV, Lima RG, Amato MBP (2009) Electrical impedance tomography. Curr Opin Crit Care 15: 18–24

    Article  PubMed  Google Scholar 

  8. Eyiiboglu BM, Brown BH, Barber DC, Seagar AD (1987) Localisation of cardiac related impedance changes in the thorax. Clin Phys Physiol Meas 8A: 167–173

    Article  Google Scholar 

  9. Wrigge H, Zinserling J, Muders T, et al (2008) Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med 36: 903–909

    Google Scholar 

  10. Beraldo MA, Reske A, Borges JB, et al (2006) PEEP titration by EIT (electrical impedance tomography): correlation with multislice CT. Am J Respir Crit Care Med 173: A64 (abst)

    Article  Google Scholar 

  11. Luepschen H, Meier T, Grossherr M, et al (2007) Protective ventilation using electrical impedance tomography. Physiol Meas 28: S247–260

    Article  Google Scholar 

  12. Suarez-Sipman F, Bohm SH, Tusman G, et al (2007) Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med 35: 214–221

    Article  Google Scholar 

  13. Chiumello D, Carlesso E, Cadringher P, et al (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178: 346–55

    Article  PubMed  Google Scholar 

  14. Bayford RH (2006) Bioimpedance tomography (electrical impedance tomography). Annu Rev Biomed Eng 8: 63–91

    Article  CAS  PubMed  Google Scholar 

  15. Yorkey TJ, Webster JG, Tompkins WJ (1987) Comparing reconstruction algorithms for electrical impedance tomography. IEEE Trans Biomed Eng 34: 843–852

    Article  CAS  PubMed  Google Scholar 

  16. Lionheart W, Polydorides N, Borsic A (2009) The reconstruction problem. In: Holder D (ed) Electrical Impedance Tomography —Methods, History and Applications. Institute of Physics Publishing, Bristol, pp 3–64

    Google Scholar 

  17. Adler A, Dai T, Lionheart W (2007) Temporal image reconstruction in electrical impedance tomography. Physiol Meas 28: S1–S11

    Article  PubMed  Google Scholar 

  18. Hochmann D, Sadok M (2004) Theory of synchronous averaging. IEEE Aerospace Conference 6: 3636–3653

    Google Scholar 

  19. Eyüboglu BM, Brown BH, Barber DC (1989) In vivo imaging of cardiac related impedance changes. IEEE Engineering in medicine and biology magazine 8: 39–45

    Article  PubMed  Google Scholar 

  20. Lyons, RG (2004) Understanding Digital Signal Processing, 2nd edition, Chapter II, Prentice Hall PTR, New Jersey

    Google Scholar 

  21. Leathard AD, Brown, BH, Campbell J, et al (1994) A comparison of ventilator and cardiac related changes in EIT images of normal human lungs and of lungs with pulmonary emboli. Physiol Meas 15: A137–A146

    Article  PubMed  Google Scholar 

  22. Krivoshei A, Kukk V, Min M (2008) Decomposition method of an electrical bio-impedance signal into cardiac and respiratory components. Physiol Meas 29: S15–S26

    Article  CAS  PubMed  Google Scholar 

  23. Deibele JM, Luepschen H, Leonhardt S (2008) Dynamic separation of pulmonary and cardiac changes in electrical impedance tomography. Physiol Meas 29: S1–S14

    Article  CAS  PubMed  Google Scholar 

  24. Patterson RP (1985) Sources of the thoracic cardiogenic electrical impedance signal as determined by a model. Med Biol Eng Comp 23: 411–417

    Article  CAS  Google Scholar 

  25. Brown BH, Leathard A, Sinton A, et al (1992) Blood flow imaging using electrical impedance tomography. Clin Phys Physiol Meas 13: A175–A179

    Article  Google Scholar 

  26. Dawson P, Cosgrove DO, Grainger RG (1999) Textbook of Contrast Media. ISIS Medical Media, Oxford, p. 612

    Google Scholar 

  27. Hahn G, Dittmar J, Just A, Hellige G (2008) Improvements in the image quality of ventilatory tomograms by electrical impedance tomography. Physiol Meas 29: S51–S61

    Article  CAS  PubMed  Google Scholar 

  28. Vonk-Noordegraaf A, Janse A, Marcus JT et al (2000) Determination of stroke volume by means of electrical impedance tomography. Physiol Meas 21: 285–293

    Article  PubMed  Google Scholar 

  29. Vonk Noordegraaf A, Faes TJ, Marcus JT, et al (1996) Improvement of cardiac imaging in electrical impedance tomography by means of a new electrode configuration. Physiol Meas 17: 179–188

    Article  CAS  PubMed  Google Scholar 

  30. Zlochiver S, Freimark D, Arad M, et al (2006) Parametric EIT for monitoring cardiac stroke volume. Phys Meas 27: S139–S146

    Article  CAS  Google Scholar 

  31. Frerichs I, Hinz J, Hermann P, et al (2002) Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging. IEEE Trans Med Imaging 21: 646–652

    Article  PubMed  Google Scholar 

  32. Luepschen H, Meier T, Leibecke T, et al (2006) Enhancement of protective ventilation strategies using electrical impedance tomography. IFMBE Proceedings of the World Congress on Medical Physics and Biomedical Engineering 14, WC2006 (abst)

    Google Scholar 

  33. Bein B, Meybohm P, Cavus E, et al (2007) The reliability of pulse contour-derived cardiac output during hemorrhage and after vasopressor administration. Anesth Analg 105: 107–113

    Article  PubMed  Google Scholar 

  34. Smit HJ, Vonk-Noordegraaf A, Marcus JT, et al (2004) Determinants of pulmonary perfusion measured by electrical impedance tomography. Eur J Appl Physiol 92: 45–49

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media Inc.

About this paper

Cite this paper

Luepschen, H., Leonhardt, S., Putensen, C. (2010). Measuring Stroke Volume Using Electrical Impedance Tomography. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5562-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5562-3_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5561-6

  • Online ISBN: 978-1-4419-5562-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics