Skip to main content

Targeted Treatment of Microvascular Dysfunction

  • Conference paper
Intensive Care Medicine
  • 2181 Accesses

Abstract

Nearly all critically ill patients requiring advanced life support exhibit systemic inflammation. Septic shock, the most common disorder in the critically ill, results from the direct adverse consequences of infection combined with a maladaptive response resulting in fulminant systemic inflammation. This powerful interaction results in a mortality rate of up to 50 % for victims of this disease [14]. While septic shock is most often described as (warm' hypotension (particularly lowering diastolic blood pressure) despite initial resuscitation, the patient often exhibits circulatory failure demonstrated by mottled extremities and low mixed or central venous oxygen saturation as a result of inadequate oxygen delivery. A key component of the shock due to severe sepsis, cardiac impairment, can be demonstrated in 50–100 0/0 of patients diagnosed with septic shock [59]. While diagnosed at the macrovascular level, cardiac pump failure is itself due to microcirculatory dysfunction and impaired oxygen extraction in the heart [10]. A daily clinical challenge faced by those caring for the critically ill is that while the patient presents with circulatory failure, advanced studies such as echo cardiography and measurement of central venous oxygen tension (ScvO2) actually demonstrate normal or even supra-normal cardiac output. This picture is often accompanied by an increasing lactate level and progressive organ dysfunction. It is now believed that this failure to adequately perfuse vital organs despite an ostensibly normal macrocirculation is due to dysfunction of the microcirculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29: 1303–1310

    Article  CAS  PubMed  Google Scholar 

  2. Wang HE, Shapiro NI, Angus DC, Yealy DM (2007) National estimates of severe sepsis in United States emergency departments. Crit Care Med 35: 1928–1936

    Article  PubMed  Google Scholar 

  3. Dellinger RP, Levy MM, Carlet JM, et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36: 296–327

    Article  PubMed  Google Scholar 

  4. Sprung CL, Annane D, Keh D, et al (2008) Hydrocortisone therapy for patients with septic shock. N Engl J Med 358: 111–124

    Article  CAS  PubMed  Google Scholar 

  5. Parker MM, Shelhamer JH, Bacharach SL, et al (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100:483–490

    CAS  PubMed  Google Scholar 

  6. Joseph MX, Disney PJ, Da Costa R, Hutchison SJ (2004) Transthoracic echocardiography to identify or exclude cardiac cause of shock. Chest 126: 1592–1597

    Article  PubMed  Google Scholar 

  7. Khoury AF, Afridi I, Quinones MA, Zoghbi WA (1994) Transesophageal echocardiography in critically ill patients: feasibility, safety, and impact on management. Am Heart J 127: 1363–1371

    Article  CAS  PubMed  Google Scholar 

  8. Ognibene FP, Parker MM, Natanson C, Shelhamer JH, Parrillo JE (1988) Depressed left ventricular performance. Response to volume infusion in patients with sepsis and septic shock. Chest 93: 903–910

    Article  CAS  PubMed  Google Scholar 

  9. Jardin F, Fourme T, Page B, et al (1999) Persistent preload defect in severe sepsis despite fluid loading: A longitudinal echocardiographic study in patients with septic shock. Chest 116: 1354–1359

    Article  CAS  PubMed  Google Scholar 

  10. Herbertson MJ, Werner HA, Russell JA, Iversen K, Walley KR (1995) Myocardial oxygen extraction ratio is decreased during endotoxemia in pigs. J Appl Physiol 79: 479–486

    CAS  PubMed  Google Scholar 

  11. LeDoux D, Astiz ME, Carpati CM, Rackow EC (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28: 2729–2732

    Article  CAS  PubMed  Google Scholar 

  12. Anning PB, Finney SJ, Singh S, Winlove CP, Evans TW (2004) Fluids reverse the early lipopolysaccharide-induced albumin leakage in rodent mesenteric venules. Intensive Care Med 30: 1944–1949

    Article  PubMed  Google Scholar 

  13. Arming PB, Sair M, Winlove CP, Evans TW (1999) Abnormal tissue oxygenation and cardiovascular changes in endotoxemia. Am J Respir Crit Care Med 159: 1710–1715

    Google Scholar 

  14. Bateman RM, Jagger JE, Sharpe MD, Ellsworth ML, Mehta S, Ellis CG (2001) Erythrocyte deformability is a nitric oxide-mediated factor in decreased capillary density during sepsis. Am J Physiol Heart Circ Physiol 280: H2848–2856

    CAS  PubMed  Google Scholar 

  15. Ellis CG, Bateman RM, Sharpe MD, Sibbald WJ, Gill R (2002) Effect of a maldistribution of microvascular blood flow on capillary O(2) extraction in sepsis. Am J Physiol Heart Circ Physiol 282: H156–164

    CAS  PubMed  Google Scholar 

  16. Goldman D, Bateman RM, Ellis CG (2004) Effect of sepsis on skeletal muscle oxygen consumption and tissue oxygenation: interpreting capillary oxygen transport data using a mathematical model. Am J Physiol Heart Circ Physiol 287: H2535–2544

    Article  CAS  PubMed  Google Scholar 

  17. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166: 98–104

    Article  PubMed  Google Scholar 

  18. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32: 1825–1831

    Article  PubMed  Google Scholar 

  19. Trzeciak S, McCoy JV, Dellinger RP, et al (2008) Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med 34: 2210–2217

    Article  PubMed  Google Scholar 

  20. Sprung CL, Caralis PV, Marcial EH, et al (1984) The effects of high-dose corticosteroids in patients with septic shock. A prospective, controlled study. N Engl J Med 311: 1137–1143

    Article  CAS  PubMed  Google Scholar 

  21. The Veterans Administration Systemic Sepsis Cooperative Study Group (1987) Effect of highdose glucocorticoid therapy on mortality in patients with clinical signs of systemic sepsis. N Engl J Med 317: 659–665

    Article  Google Scholar 

  22. Bone RC, Fisher CJ Jr, Clemmer TP, Slotman GJ, Metz CA, Balk RA (1987) A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 317: 653–658

    Article  CAS  PubMed  Google Scholar 

  23. Annane D, Sebille V, Charpentier C, et al (2002) Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 288: 862–871

    Article  CAS  PubMed  Google Scholar 

  24. Lopez A, Lorente JA, Steingrub J, et al (2004) Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 32: 21–30

    Article  CAS  PubMed  Google Scholar 

  25. Bernard GR, Wheeler AP, Russell JA, et al (1997) The effects of ibuprofen on the physiology and survival of patients with sepsis. The Ibuprofen in Sepsis Study Group. N Engl J Med 336: 912–918

    Article  CAS  PubMed  Google Scholar 

  26. Palevsky PM, Zhang JH, O'Connor TZ, et al (2008) Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 359: 7–20

    Article  CAS  PubMed  Google Scholar 

  27. Vesconi S, Cruz DN, Fumagalli R, et al (2009) Delivered dose of renal replacement therapy and mortality in critically ill patients with acute kidney injury. Crit Care 13:R57

    Article  PubMed  Google Scholar 

  28. Honore PM, Jamez J, Wauthier M, et al (2000) Prospective evaluation of short-term, high-volume isovolemic hemofiltration on the hemodynamic course and outcome in patients with intractable circulatory failure resulting from septic shock. Crit Care Med 28: 3581–3587

    Article  CAS  PubMed  Google Scholar 

  29. Alejandria MM, Lansang MA, Dans LF, Mantaring JB (2002) Intravenous immunoglobulin for treating sepsis and septic shock. Cochrane Database Syst Rev CDOO1090

    Google Scholar 

  30. Werdan K, Pilz G, Bujdoso O, et al (2007) Score-based immunoglobulin G therapy of patients with sepsis: the SBITS study. Crit Care Med 35: 2693–2701

    Article  CAS  PubMed  Google Scholar 

  31. Ziegler EJ, McCutchan JA, Fierer J, et al (1982) Treatment of gram-negative bacteremia and shock with human antiserum to a mutant Escherichia coli. N Engl J Med 307: 1225–1230

    Article  CAS  PubMed  Google Scholar 

  32. McCloskey RV, Straube RC, Sanders C, Smith SM, Smith CR (1994) Treatment of septic shock with human monoclonal antibody HA-1A. A randomized, double-blind, placebo-controlled trial. CHESS Trial Study Group. Ann Intern Med 121: 1–5

    CAS  PubMed  Google Scholar 

  33. Angus DC, Birmingham MC, Balk RA, et al (2000) E5 murine monoclonal antiendotoxin antibody in gram-negative sepsis: a randomized controlled trial. E5 Study Investigators. JAMA 283: 1723–1730

    Article  CAS  PubMed  Google Scholar 

  34. Albertson TE, Panacek EA, MacArthur RD, et al (2003) Multicenter evaluation of a human monoclonal antibody to Enterobacteriaceae common antigen in patients with Gram-negative sepsis. Crit Care Med 31: 419–427

    Article  PubMed  Google Scholar 

  35. Abraham E, Glauser MP, Butler T, et al (1997) p55 Tumor necrosis factor receptor fusion protein in the treatment of patients with severe sepsis and septic shock. A randomized controlled multicenter trial. Ro 45-2081 Study Group. JAMA 277: 1531–1538

    Article  CAS  PubMed  Google Scholar 

  36. Abraham E, Laterre PF, Garbino J, et al (2001) Lenercept (p55 tumor necrosis factor receptor fusion protein) in severe sepsis and early septic shock: a randomized, double-blind, placebocontrolled, multicenter phase III trial with 1,342 patients. Crit Care Med 29: 503–510

    Article  CAS  PubMed  Google Scholar 

  37. Abraham E, Wunderink R, Silverman H, et al (1995) Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. TNF-alpha MAb Sepsis Study Group. JAMA 273: 934–941

    Article  CAS  PubMed  Google Scholar 

  38. Cohen J, Carlet J (1996) INTERSEPT: an international, multicenter, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-alpha in patients with sepsis. International Sepsis Trial Study Group. Crit Care Med 24: 1431–1440

    Article  CAS  PubMed  Google Scholar 

  39. Panacek EA, Marshall JC, Albertson TE, et al (2004) Efficacy and safety of the monoclonal anti-tumor necrosis factor antibody F(ab')2 fragment afelimomab in patients with severe sepsis and elevated interleukin-6 levels. Crit Care Med 32: 2173–2182

    CAS  PubMed  Google Scholar 

  40. Calandra T, Echtenacher B, Roy DL, et al (2000) Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat Med 6: 164–170

    Article  CAS  PubMed  Google Scholar 

  41. Warren BL, Eid A, Singer P, et al (2001) Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 286: 1869–1878

    Article  CAS  PubMed  Google Scholar 

  42. Abraham E, Reinhart K, Opal S, et al (2003) Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA 290: 238–247

    Article  CAS  PubMed  Google Scholar 

  43. Bernard GR, Vincent IL, Laterre PF, et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344: 699–709

    Article  CAS  PubMed  Google Scholar 

  44. De Backer D, Hollenberg S, Boerma C, et al (2007) How to evaluate the microcirculation: report of a round table conference. Crit Care 11: RIO1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media Inc.

About this paper

Cite this paper

Boyd, J.H. (2010). Targeted Treatment of Microvascular Dysfunction. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5562-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5562-3_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5561-6

  • Online ISBN: 978-1-4419-5562-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics