Vitamin D in Critical Illness

  • A. Krishnan
  • J. Ochola
  • B. Venkatesh
Conference paper

Abstract

Vitamin D is well known for its regulatory effects on calcium and phosphate homeostasis and its role in the maintenance of bone integrity. Over the past decade, there have been data from biochemical and molecular genetic studies that point to vitamin D having a much wider role than just maintenance of calcium and phosphate metabolism. Vitamin D and its synthetic analogues have been shown to have anticancer properties as well as to modulate the immune system. Recently, vitamin D deficiency has been reported in critically ill patients [1, 2]. However, it is still unclear how this deficiency affects patient outcomes in intensive care. The focus of this chapter is to examine the role of vitamin D in the body, with discussion of its effects on mineral and bone metabolism as well as its pleiotropic effects and the role it may play in the pathophysiology of critical illness.

Keywords

Half Life Progesterone Renin Atorvastatin Myopathy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nierman DM, Mechanick JI (1998) Bone hyperresorption is prevalent in chronically critically ill patients. Chest 114: 954–955CrossRefGoogle Scholar
  2. 2.
    Van den Berghe G, Van Roosbroeck D, Vanhove P, Wouters PJ, De Pourcq L, Bouillon R (2003) Bone turnover in prolonged critical illness: effect of vitamin D. J Clin Endocrinol Metab 88: 4623–4632CrossRefPubMedGoogle Scholar
  3. 3.
    Halloran BP, Portale AA, Castro M, Morris RC Jr, Goldsmith RS (1985) Serum concentration of 1,25-dihydroxyvitamin D in the human: diurnal variation. J Clin Endocrinol Metab 60: 1104–1110CrossRefPubMedGoogle Scholar
  4. 4.
    Rejnmark L, Lauridsen AL, Vestergaard P, Heickendorff L, Andreasen F, Mosekilde L (2002) Diurnal rhythm of plasma 1,25-dihydroxyvitamin D and vitamin D-binding protein in postmenopausal women: relationship to plasma parathyroid hormone and calcium and phosphate metabolism. Eu J Endocrinol 146: 635–642CrossRefGoogle Scholar
  5. 5.
    Jurutka PW, Whitfield GK, Mathern DR, et al (2007) Vitamin D receptor: Key roles in bone mineral pathophysiology, molecular mechanism of action, and novel nutritional ligands. J Bone Min Res 22 (Suppl 2): V2–10CrossRefGoogle Scholar
  6. 6.
    Merke J, Hofmann W, Goldschmidt D, Ritz E (1987) Demonstration of 1,25 (OH)2 vitamin D3 receptors and actions in vascular smooth muscle cells in vitro. Calcif Tissue Int 41: 112–114CrossRefPubMedGoogle Scholar
  7. 7.
    Bischoff-Ferrari HA, Dawson-Hughes B, Willet WC, et al (2004) Effect of vitamin D on falls: A meta-analysis. JAMA 291: 1999–2006CrossRefPubMedGoogle Scholar
  8. 8.
    Merke J, Milde P, Lewicka S, et al (1989) Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25 dihydroxyvitamin D3: studies in cultured bovine aortic endothelial cells and human dermal capillaries. J Clin Invest 83: 1903–1915CrossRefPubMedGoogle Scholar
  9. 9.
    Holick MF (2006) High prevalence of vitamin d inadequacy and implications for health. Mayo Clin Proc 81: 353–373CrossRefPubMedGoogle Scholar
  10. 10.
    Tishkoff DX, Nibbelink KA, Holmberg KH, et al (2008) Functional vitamin D receptor (VDR) in the t-tubules of cardiac myocytes: VDR knockout cardiomyocyte contractility. Endocrinology 149: 558–564CrossRefPubMedGoogle Scholar
  11. 11.
    Simpson RU, Hershey SH, Nibbelink KA et al (2007) Characterization of heart size and blood pressure in the vitamin D receptor knockout mouse. J Steroid Biochem Mol Biol 103: 521–524CrossRefPubMedGoogle Scholar
  12. 12.
    Resnick LM, Muller FB, Laragh JH (1986) Calcium-regulating hormones in essential hypertension: relation to plasma rennin activity and sodium metabolism. Ann Intern Med 105: 649–654PubMedGoogle Scholar
  13. 13.
    Rigby WF, Denome S, Fanger MW (1987) Regulation of lymphokine production and human T lymphocyte activation by 1,25-dihydroxyvitamin D3; specific inhibition at the level of messenger RNA. J Clin Invest 79: 1659–1664CrossRefPubMedGoogle Scholar
  14. 14.
    Watson KE, Abrolat ML, Malone LL, et al (1997) Active serum vitamin D levels are inversely correlated with coronary calcification. Circulation 96: 1755–1760PubMedGoogle Scholar
  15. 15.
    Wang TJ, Pencina MJ, Booth SL, et al (2008) Vitamin D deficiency and risk of cardiovascular disease. Circulation 117: 503–511CrossRefPubMedGoogle Scholar
  16. 16.
    Zittermann A, Schleithoff SS, Gotting C, et al (2009) Calcitriol deficiency and I-year mortality in cardiac transplant recipients. Transplantation 87: 118–124CrossRefPubMedGoogle Scholar
  17. 17.
    Cantorna MT, Zhu Y, Froicu M, Wittke A (2004) Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system. Am J Clin Nutr 80 (suppl): 1717S–1720SPubMedGoogle Scholar
  18. 18.
    Bemiss CJ, Mahon BD, Henry A, Weaver V, Cantorna MT (2002) IL-2 is one of the targets of 1,25-dihydroxyvitamin D3 in the immune system. Arch Biochem Biophys 402: 249–254CrossRefPubMedGoogle Scholar
  19. 19.
    Cantorna MT, Humpal-Winter J, DeLuca HF (2000) In vivo upregulation of interleukin-4 is one mechanism underlying the immunoregulatory effects of 1,25-dihydroxyvitamin D3. Arch Biochem Biophys 377: 135–138CrossRefPubMedGoogle Scholar
  20. 20.
    Cohen-Lahav M, Douvdevani A, Chaimovitz C, Shany S (2007) The anti-inflammatory activity of 1,25-dihydroxyvitamin D3 in macrophages. J Steroid Biochem Mol Biol 103: 558–562CrossRefPubMedGoogle Scholar
  21. 21.
    Talmor Y, Bernheim J, Klein O, Green J, Rashid G (2008) Calcitriol blunts pro-atherosclerotic parameters through NFKB and p38 in vitro. Eur J Clin Invest 38: 548–554CrossRefPubMedGoogle Scholar
  22. 22.
    Deluca HF, Cantorna M (2001) Vitamin D: its role and uses in immunology. FASEB J 15: 2579–2585CrossRefPubMedGoogle Scholar
  23. 23.
    Szodoray P, Nakken B, Gaal J, et al (2008) The complex role of vitamin D in autoimmune diseases. Scand J Immunol 68: 261–269CrossRefPubMedGoogle Scholar
  24. 24.
    Bamford CR, Sibley WA, Thies C (1983) Seasonal variation of multiple sclerosis exacerbation in Arizona. Neurology 33: 697–701PubMedGoogle Scholar
  25. 25.
    Munger KL, Zhang SM, O’Reilly E, et al (2004) Vitamin D intake and incidence of multiple scerlosis. Neurology 62: 60–65PubMedGoogle Scholar
  26. 26.
    Merlino LA, Curtis J, Mikuls TR, Cerhan JR, Criswell LA, Saag KG (2004) Vitamin D intake is inversely associated with rheumatoid arthritis: results from the Iowa Women’s Health Study. Arthritis Rheum 50: 72–77CrossRefPubMedGoogle Scholar
  27. 27.
    Hypponen E, Laara E, Reunanen A, Jarvelin MR, Virtanen SM (2001) Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 358: 1500–1503CrossRefPubMedGoogle Scholar
  28. 28.
    Cantorna MT, Hayhes CE, DeLuca HF (1998) 1,25-dihydroxycholecalciferol inhibits the progression of arthritis in murine models of human arthritis. J Nutr 128: 68–72PubMedGoogle Scholar
  29. 29.
    Poon AH, Laprise C, Lemire M, et al (2004) Association of Vitamin D receptor genetic variants with susceptibility to asthma and atopy. Am J Respir Crit Care Med 170: 967–973CrossRefPubMedGoogle Scholar
  30. 30.
    Schauber J, Dorschner RA, Coda AB, et al (2007) Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J Clin Invest 117: 803–811CrossRefPubMedGoogle Scholar
  31. 31.
    Lin R, Nagai Y, Sladek R, et al (2002) Expression profiling in squamous carcinoma cells reveals pleiotropic effects of vitamin D3 analog EBI089 signalling on cell proliferation, differentiation and immune system regulation. Mol Endocrinol 16: 1243–1256CrossRefPubMedGoogle Scholar
  32. 32.
    Wang TT, Nestel FP, Bourdeau V, et al (2004) Cutting Edge: 1,25-dihydroxyvitamin D 3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173: 2909–2912PubMedGoogle Scholar
  33. 33.
    Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatin agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10: 1033–1043CrossRefPubMedGoogle Scholar
  34. 34.
    Saiman L, Tabibi S, Starner TD, et al (2001) Cathelicidin peptides inhibit multiple antibioticresistant pathogens from patients with cystic fibrosis. Antimicrob Agents Chemother 45: 2838–2844CrossRefPubMedGoogle Scholar
  35. 35.
    Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock REW (2002) The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune response. J Immunol 169: 3883–3891PubMedGoogle Scholar
  36. 36.
    VanderMeer TJ, Menconi MJ, Zhuang J, et al (1995) Protective effects of a novel 32-amino acid C-terminal fragment of CAP 18 in endotoxemic pigs. Surgery 117: 656–662CrossRefPubMedGoogle Scholar
  37. 37.
    Murakami M, Ohtake T, Dorschner RA, Gallo RL (2002) Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J Dent Res 81: 845–850CrossRefPubMedGoogle Scholar
  38. 38.
    Möller S, Laigaard F, Olgaard K, Hemmingsen C (2007) Effect of 1,25-dihydroxy-vitamin D3 in experimental sepsis. Int J Med Sci 4: 190–195PubMedGoogle Scholar
  39. 39.
    Liu PT, Stenger S, Huiying L, et al (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311: 1770–1773CrossRefPubMedGoogle Scholar
  40. 40.
    Terblanche M, Yaniv A, Rosenson RS, Smith TS, Hackam DG (2007) Statins and sepsis: multiple modifications at multiple levels. Lancet infect Dis 7: 358–368CrossRefPubMedGoogle Scholar
  41. 41.
    Hatzigeorgiou C, Jackson JL (2005) Hydroxymethylglutaryl-coenzyme A reductase inhibitors and osteoporosis: a meta-analysis. Osteoporos Int 16: 990–998CrossRefPubMedGoogle Scholar
  42. 42.
    Pérez-Castrillón JL, Vega G, Abad L, et al (2007) Effects of Atorvastatin on vitamin D levels in patients with acute ischemic heart disease. Am J Cardiol 99: 903–905CrossRefPubMedGoogle Scholar
  43. 43.
    Yavuz B, Ertugrul DT, Cil H, et al (2009) Increased levels of 25 hydroxyvitamin D and 1,25dihydroxyvitamin Dafter rosuvastatin treatment: a novel pleiotropic effect of statins? Cardiovase Drugs Ther 23: 295–299CrossRefGoogle Scholar
  44. 44.
    Kong J, Zhang Z, Musch MW, et al (2008) Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am J Physiol Gastrointest Liver Physiol 294: G208–216CrossRefGoogle Scholar
  45. 45.
    Chatterjee M (2001) Vitamin D and genomic stability. Mutat Res 475: 69–87PubMedGoogle Scholar
  46. 46.
    Chabas JF, Alluin O, Rao G, et al (2008) Vitamin D2 potentiated axon regeneration. J Neurotrauma 25: 1247–1256CrossRefPubMedGoogle Scholar
  47. 47.
    Atif F, Sayeed I, Ishrat T, Stein DG (2009) Progesterone with vitamin D affords better neuroprotection against excitotoxicity in cultured cortical neurons than progesterone alone. Mol Med 15: 321–327CrossRefGoogle Scholar
  48. 48.
    Lee P, Eisman JA, Center JR (2009) Vitamin D deficiency in critically ill patients. N Engl J Med 360: 1912–1914CrossRefPubMedGoogle Scholar
  49. 49.
    Melamed ML, Michos ED, Post W, Astor B (2008) 25-hydroxyvitamin D levels and the risk of mortality in the general population. Arch Intern Med 168: 1629–1637CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media Inc. 2010

Authors and Affiliations

  • A. Krishnan
    • 1
  • J. Ochola
    • 1
  • B. Venkatesh
    • 1
  1. 1.Department of Intensive CarePrincess Alexandra and Ipswich HospitalsBrisbaneAustralia

Personalised recommendations