Skip to main content

Standardization of Care to Improve Outcomes of Patients with Ventilator-associated Pneumonia and Severe Sepsis

  • Conference paper
Intensive Care Medicine
  • 2155 Accesses

Abstract

Translating the results of research into clinical practice in critically ill patients is a challenging endeavor and often a slow, complex process. The medical literature is replete with evidence-based guidelines and protocols aimed at standardizing processes of medical care in an attempt to improve patient outcomes [1]. Despite the widespread availability of such documents, non-adherence to guidelines is readily apparent and directly impacts patient care [2]. Explanations for the lack of guideline adherence include excessive workloads for bedside healthcare providers (nurses, therapists, physicians), disagreement in interpretation of clinical trials, limited evidence in support of specific pharmacologic or non-pharmacologic treatment strategies, and simply the hesitancy to change practices at the beside (1,2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Micek ST, Kollef MH (2007) Using protocols to improve the outcomes of critically ill patients with infection: Focus on ventilator-associated pneumonia and severe sepsis. In: Rello J, Kollef M, Diaz E, Rodriguez A (eds) Infectious Diseases in Critical Care. Springer-Verlag, Heidelberg, pp 78–89

    Chapter  Google Scholar 

  2. Kollef MH (2009) Clinical practice improvement initiatives: Don’t be satisfied with the early results. Chest 136: 335–338

    Article  PubMed  Google Scholar 

  3. Ely EW, Baker AM, Dunagan DP, et al (1996) Effect of the duration of mechanical ventilation on identifying patients capable of breathing spontaneously. N Engl J Med 335: 1864–1869

    Article  CAS  PubMed  Google Scholar 

  4. Kollef MH, Shapiro SD, Silver P, et al (1997) A randomized, controlled trial of protocol-directed versus physician-directed weaning from mechanical ventilation. Crit Care Med 25: 567–574

    Article  CAS  PubMed  Google Scholar 

  5. Marelich GP, Murin S, Battistella F, Inciarda J, Vierra T, Roby M (2000) Protocol weaning of mechanical ventilation in medical and surgical patients by respiratory care practitioners and nurses. Effect on weaning time and incidence of ventilator associated pneumonia. Chest 118: 459–467

    Article  CAS  PubMed  Google Scholar 

  6. Ely EW, Bennett PA, Bowton DL, Murphy SM, Florance AM, Haponik EF (1999) Large scale implementation of a respiratory therapist-driven protocol for ventilator weaning. Am J Respir Crit Care Med 159: 439–446

    CAS  PubMed  Google Scholar 

  7. Horst HM, Mouro D, Hall-Jenssens RA, Pamukov N (1998) Decrease in ventilation time with a standardized weaning process. Arch Surg 133: 483–488

    Article  CAS  PubMed  Google Scholar 

  8. Brook AD, Ahrens TS, Schaiff R, et al (1999) Effect of a nursing-implemented sedation protocol on the duration of mechanical ventilation. Crit Care Med 27: 2609–2615

    Article  CAS  PubMed  Google Scholar 

  9. Kress JP, Pohlman AS, O’Connor MF, et al. (2000) Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 342: 1471–1477

    Article  CAS  PubMed  Google Scholar 

  10. Van den Berghe G, Wouters P, Weekers F, et al (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345: 1359–1367

    Article  CAS  PubMed  Google Scholar 

  11. Preissig CM, Hansen I, Roerig PL, Rigby MR (2008) A protocolized approach to identify and manage hyperglycemia in a pediatric critical care unit. Pediatr Crit Care Med 9: 581–588

    Article  PubMed  Google Scholar 

  12. Lecomte P, Foubert L, Nobels F, et al (2008) Dynamic tight glycemic control during and after cardiac surgery is effective, feasible, and safe. Anesth Analg 107: 51–58

    Article  CAS  PubMed  Google Scholar 

  13. Zack JE, Garrison T, Trovillion E, et al (2002) Effect of an education program aimed at reducing the occurrence of ventilator-associated pneumonia. Crit Care Med 30: 2407–2412

    Article  PubMed  Google Scholar 

  14. Babcock HM, Zack JE, Garrison T, et al (2004) An educational intervention to reduce ventilator-associated pneumonia in an integrated health system: a comparison of effects. Chest 125: 2224–2231

    Article  PubMed  Google Scholar 

  15. McMullen KM, Zack J, Coopersmith CM, Kollef M, Dubberke E, Warren DK (2007) Use of hypochlorite solution to decrease rates of Clostridium difficile-associated diarrhea. Infect Control Hosp Epidemiol 28: 205–207

    Article  PubMed  Google Scholar 

  16. Warren DK, Zack JE, Mayfield JL, et al (2004) The effect of an education program on the incidence of central venous catheter-associated bloodstream infection in a medical ICU. Chest 126: 1612–1618

    Article  PubMed  Google Scholar 

  17. Merz LR, Warren DK, Kollef MH, Fridkin SK, Fraser VJ (2006) The impact of an antibiotic cycling program on empirical therapy for gram-negative infections. Chest 130: 1672–1678

    Article  PubMed  Google Scholar 

  18. Schuerer DJ, Zack JE, Thomas J, et al (2007) Effect of chlorhexidine/silver sulfadiazine-impregnated central venous catheters in an intensive care unit with a low blood stream infection rate after implementation of an educational program: a before-after trial. Surg Infect 8: 445–454

    Article  Google Scholar 

  19. Coopersmith CM, Rebmann TL, Zack JE, et al (2002) Effect of an education program on decreasing catheter-related bloodstream infections in the surgical intensive care unit. Crit Care Med 30: 59–64

    Article  PubMed  Google Scholar 

  20. Coopersmith CM, Zack JE, Ward MR, et al (2004) The impact of bedside behavior on catheter-related bacteremia in the intensive care unit. Arch Surg 139: 131–136

    Article  PubMed  Google Scholar 

  21. Kollef MH, Ward S (1998) The influence of mini-BAL cultures on patient outcomes: implications for the antibiotic management of ventilator-associated pneumonia. Chest 113: 412–420

    Article  CAS  PubMed  Google Scholar 

  22. Luna CM, Vujacich P, Niederman MS, et al (1997) Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest 111: 676–685

    Article  CAS  PubMed  Google Scholar 

  23. Alvarez-Lerma F (1996) Modification of empiric antibiotic treatment in patients with pneumonia acquired in the intensive care unit. ICU-Acquired Pneumonia Study Group. Intensive Care Med 22: 387–394

    Article  CAS  PubMed  Google Scholar 

  24. Iregui M, Ward S, Sherman G, Fraser VJ, Kollef MH (2002) Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest 122: 262–268

    Article  PubMed  Google Scholar 

  25. Niederman MS, Craven DE, Bonten MJ, et al (2005) ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171: 388–416

    Article  Google Scholar 

  26. Namias N, Samiian L, Nino D, et al (2000) Incidence and susceptibility of pathogenic bacteria vary between intensive care units within a single hospital: implications for empiric antibiotic strategies. J Trauma 49: 638–645

    Article  CAS  PubMed  Google Scholar 

  27. Rello J, Sa-Borges M, Correa H, Baraibar J (1999) Variations in etiology of ventilator-associated pneumonia across four treatment sites: implications for antimicrobial prescribing practices. Am J Respir Crit Care Med 160: 608–613

    CAS  PubMed  Google Scholar 

  28. Ibrahim EH, Ward S, Sherman G, Schaiff R, Fraser VJ, Kollef MH (2001) Experience with a clinical guideline for the treatment of ventilator-associated pneumonia. Crit Care Med 29: 1109–1115

    Article  CAS  PubMed  Google Scholar 

  29. Wood GC, Mueller EW, Croce MA, Boucher BA, Hanes SD, Fabian TC (2005) Evaluation of a clinical pathway for ventilator-associated pneumonia: changes in bacterial flora and the adequacy of empiric antibiotics over a three-year period. Surg Infect 6: 203–213

    Article  Google Scholar 

  30. Lancaster JW, Lawrence KR, Fong JJ, et al (2008) Impact of an institution-specific hospital-acquired pneumonia protocol on the appropriateness of antibiotic therapy and patient outcomes. Pharmacotherapy 28: 852–862

    Article  PubMed  Google Scholar 

  31. Soo Hoo GW, Wen E, Nguyen TV, Goetz MB (2005) Impact of clinical guidelines in the management of severe hospital-acquired pneumonia. Chest 128: 2778–2787

    Article  PubMed  Google Scholar 

  32. Rello J, Vidaur L, Sandiumenge A, et al (2004) De-escalation therapy in ventilator-associated pneumonia. Crit Care Med 32: 2183–2190

    PubMed  Google Scholar 

  33. Micek ST, Ward S, Fraser VJ, Kollef MH (2004) A randomized controlled trial of an antibiotic discontinuation policy for clinically suspected ventilator-associated pneumonia. Chest 125: 1791–1799

    Article  PubMed  Google Scholar 

  34. Zack JE, Garrison T, Trovillion E, et al (2002) Effect of an education program aimed at reducing the occurrence of ventilator-associated pneumonia. Crit Care Med 30: 2407–2412

    Article  PubMed  Google Scholar 

  35. Babcock HM, Zack JE, Garrison T, et al. (2004) An educational intervention to reduce ventilator-associated pneumonia in an integrated health system. A comparison of effects. Chest 125: 2224–2231

    Article  PubMed  Google Scholar 

  36. Hotchkiss RS Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348: 138–150

    Article  CAS  PubMed  Google Scholar 

  37. Annane D, Bellissant E, Cavaillon JM (2005) Septic shock. Lancet 365: 63–78

    Article  CAS  PubMed  Google Scholar 

  38. Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–1377

    Article  CAS  PubMed  Google Scholar 

  39. Dellinger RP, Levy MM, Carlet JM, et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36: 296–327

    Article  PubMed  Google Scholar 

  40. Harbarth S, Garbino J, Pugin J, Romand JA, Lew D, Pittet D (2003) Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med 115: 529–535

    Article  PubMed  Google Scholar 

  41. Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A, Jimenez-Jimenez FJ, Perez-Paredes C, Ortiz-Leyba C (2003) Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit Care Med 31: 2742–2751

    Article  PubMed  Google Scholar 

  42. Micek ST, Isakow W, Shannon W, Kollef MH (2005) Predictors of hospital mortality for patients with severe sepsis treated with drotrecogin alfa (activated). Pharmacotherapy 25: 26–34

    Article  CAS  PubMed  Google Scholar 

  43. Vyas D, Javadi P, DiPasco PJ, Buchman TG, Hotchkiss RS, Coopersmith CM (2005) Early antibiotic administration but not antibody therapy directed against IL-6 improves survival in septic mice predicted to die on basis of high IL-6 levels. Am J Physiol Regul Integr Comp Physiol 289: R1048-1053

    Google Scholar 

  44. Trzeciak S, Dellinger RP, Abate NL, et al (2006) Translating research to clinical practice: A 1year experience with implementing early goal-directed therapy for septic shock in the emergency department. Chest 129: 225–232

    Article  PubMed  Google Scholar 

  45. Shapiro NI, Howell MD, Talmor D, et al (2006) Implementation and outcomes of the Multiple Urgent Sepsis Therapies (MUST) protocol. Crit Care Med 34: 1025–1032

    Article  PubMed  Google Scholar 

  46. Micek ST, Roubinian N, Heuring T, et al (2006) A before-after study of a standardized hospital order set for the management of septic shock. Crit Care Med 34: 2707–2713

    Article  PubMed  Google Scholar 

  47. Kortgen A, Niederprum P, Bauer M (2006) Implementation of an evidence-based “standard operating procedure” and outcome in septic shock. Crit Care Med 34: 943–949

    Article  PubMed  Google Scholar 

  48. Gao F, Melody T, Daniels DF, Giles S, Fox S (2005) The impact of compliance with 6-hour and 24-hour sepsis bundles on hospital mortality in patients with severe sepsis: a prospective observational study. Crit Care 9: R764–770

    Article  Google Scholar 

  49. Thiel S, Asghar MF, Micek S, Reichley RM, Doherty JA, Kollef MH (2009) Hospital-wide impact of a standardized order set for the management of bactermic severe sepsis. Crit Care Med 37: 819–824

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media Inc.

About this paper

Cite this paper

Kollef, M.H., Micek, S.T. (2010). Standardization of Care to Improve Outcomes of Patients with Ventilator-associated Pneumonia and Severe Sepsis. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5562-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5562-3_23

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5561-6

  • Online ISBN: 978-1-4419-5562-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics