Skip to main content

Fluid Management in Acute Lung Injury and ARDS

  • Conference paper
  • 2195 Accesses

Abstract

The ventilatory treatment of acute respiratory distress syndrome (ARDS) has greatly improved in recent years. During the same period, numerous non-ventilatory therapies have been evaluated — some promising, others disappointing in their physiological effects and outcome. Among them, modulation of fluid state and of plasma oncotic pressure has been the object of studies in patients. ARDS is particularly characterized by pulmonary edema owing to an increase in pulmonary capillary permeability. In the early phase of ARDS, an associated septic state is usually responsible for hypovolemia. At this stage, hemodynamic optimization by early and adapted filling has proved to have prognostic value [1] and a fluid restriction strategy can result in hemodynamic aggravation and dysfunction of associated organs, determining the mortality of patients presenting with ARDS [2]. Subsequently, hemodynamic stabilization is generally associated with a resumption of diuresis and a decrease in body weight. Passage from one phase to another is often complex and difficult to distinguish but it is probably by identifying the transition between these two phases that one can detect the moment when a strategy of optimization of fluid balance on the restrictive side is possible. After a review of the physiopathologic bases, this chapter will present the principal clinical studies that have made it possible to advance in the optimization of the fluid state during ARDS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–1377

    Article  CAS  PubMed  Google Scholar 

  2. Stapleton RD, Wang BM, Hudson LD, et al (2005) Causes and timing of death in patients with ARDS. Chest 128: 525–532

    Article  PubMed  Google Scholar 

  3. Roch A, Allardet-Servent J (2007) Physiopathologie de l’oedème pulmonaire. Réanimation 16: 102–110

    Google Scholar 

  4. Simmons RS, Berdine GG, Seidenfeld JJ, et al (1987) Fluid balance and the adult respiratory distress syndrome. Am Rev Respir Dis 135: 924–929

    CAS  PubMed  Google Scholar 

  5. Sakka SG, Klein M, Reinhart K, et al (2002) Prognostic value of extravascular lung water in critically ill patients. Chest 122: 2080–2086

    Article  PubMed  Google Scholar 

  6. Sibbald WJ, Short AK, Warshawski FJ, et al (1985) Thermal dye measurements of extravascular lung water in critically ill patients. Intravascular Starling forces and extravascular lung water in the adult respiratory distress syndrome. Chest 87: 585–592

    Article  CAS  PubMed  Google Scholar 

  7. Mitchell JP, Schuller D, Calandrino FS, Schuster DP (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis 145: 990–998

    CAS  PubMed  Google Scholar 

  8. Rubenfeld GD, Caldwell E, Peabody E, et al (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353: 1685–1693

    Article  CAS  PubMed  Google Scholar 

  9. Brun-Buisson C, Minelli C, Bertolini G, et al (2004) Epidemiology and outcome of acute lung injury in European intensive care units. Results from the ALIVE study. Intensive Care Med 30: 51–61

    Article  PubMed  Google Scholar 

  10. Zeiter M (1992) Physiopathologie de l’oedème pulmonaire: aspects mécaniques, In: F Lemaire, M Zeiter (ed) Oedèmes Pulmonaires. Masson, Paris, pp 1–20

    Google Scholar 

  11. Dudek SM, Garcia JG (2001) Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 91: 1487–500

    CAS  PubMed  Google Scholar 

  12. Guyton AC (1965) Interstitial fluid pressure. II. Pressure-volume curves of interstitial space. Circ Res 16: 452–460

    CAS  PubMed  Google Scholar 

  13. Prewitt RM, McCarthy J, Wood LD (1981) Treatment of acute low pressure pulmonary edema in dogs: relative effects of hydrostatic and oncotic pressure, nitroprusside, and positive end expiratory pressure. J Clin Invest 67: 409–418

    Article  CAS  PubMed  Google Scholar 

  14. Molloy WD, Lee KY, Girling L, Prewitt RM (1985) Treatment of canine permeability pulmonary edema: short-term effects of dobutamine, furosemide, and hydralazine. Circulation 72: 1365–1371

    CAS  PubMed  Google Scholar 

  15. Bjertnaes LJ, Koizumi T, Newman JH (1998) Inhaled nitric oxide reduces lung fluid filtration after endotoxin in awake sheep. Am J Respir Crit Care Med 158: 1416–1423

    CAS  PubMed  Google Scholar 

  16. Matthay MA, Landolt CC, Staub NC (1982) Differential liquid and protein clearance from the alveoli of anesthetized sheep. J Appl Physiol 53: 96–104

    CAS  PubMed  Google Scholar 

  17. Ware LB, Matthay MA (2001) Alveolar fluid clearance is impaired in the majority of patients with Acute lung injury and ARDS. Am J Respir Crit Care Med 163: 1376–1383

    CAS  PubMed  Google Scholar 

  18. Radermacher P, Santak B, Becker H, Falke KJ (1989) Prostaglandin El and nitroglycerin reduce pulmonary capillary pressure but worsen ventilation-perfusion distributions in patients with adult respiratory distress syndrome. Anesthesiology 70: 601–606

    Article  CAS  PubMed  Google Scholar 

  19. Benzing A, Geiger K (1994) Inhaled nitric oxide lowers pulmonary capillary pressure and changes longitudinal distribution of pulmonary vascular resistance in patients with acute lung injury. Acta Anaesthesiol Scand 38: 640–645

    Article  CAS  PubMed  Google Scholar 

  20. Rossetti M, Guenard H, Gabinski C (1996) Effects of nitric oxide inhalation on pulmonary serial vascular resistances in ARDS. Am J Respir Crit Care Med 154: 1375–1381

    CAS  PubMed  Google Scholar 

  21. Taylor RW, Zimmerman JL, Dellinger RP, et al (2004) Inhaled Nitric Oxide in ARDS Study Group. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA 291: 1603–1609

    Article  CAS  PubMed  Google Scholar 

  22. Humphrey H, Hall J, Sznajder I, et al (1990) Improved survival in ARDS patients associated with a reduction in pulmonary capillary wedge pressure. Chest 97: 1176–1180

    Article  CAS  PubMed  Google Scholar 

  23. Wiedemann HP, Wheeler AP, Bernard GR, et al (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354: 2564–75

    Article  CAS  PubMed  Google Scholar 

  24. Rivers EP (2006) Fluid-management strategies in acute lung injury—liberal, conservative, or both? N Engl J Med 354: 2598–2600

    Article  CAS  PubMed  Google Scholar 

  25. Murphy CV, Schramm GE, Doherty JA, et al (2009) The importance of fluid management in acute lung injury secondary to septic shock. Chest 136: 102–109

    Article  PubMed  Google Scholar 

  26. Dellinger RP, Levy MM, Carlet JM, et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock. Intensive Care Med 34: 17–60

    Article  PubMed  Google Scholar 

  27. Rosenberg AL, Dechert RE, Park PK, et al (2009) Review of a large clinical series: association of cumulative fluid balance on outcome in acute lung injury: a retrospective review of the ARDSnet tidal volume study cohort. J Intensive Care Med 24: 35–46

    Article  PubMed  Google Scholar 

  28. Cooke CR, Shah CV, Gallop R, et al (2009) A simple clinical predictive index for objective estimates of mortality in acute lung injury. Crit Care Med 37: 1913–20

    Article  PubMed  Google Scholar 

  29. Hebert PC, Wells G, Blajchman MA, et al (1999) A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. N Engl J Med 340: 409–417

    Article  CAS  PubMed  Google Scholar 

  30. Calfee CS, Matthay MA (2007) Nonventilatory treatments for acute lung injury and ARDS. Chest 131: 913–920

    Article  PubMed  Google Scholar 

  31. Mangialardi RJ, Martin GS, Bernard GR, et al (2000) Hypoproteinemia predicts acute respiratory distress syndrome development, weight gain, and death in patients with sepsis. Ibuprofen in Sepsis Study Group. Crit Care Med 28: 3137–3145

    Article  CAS  PubMed  Google Scholar 

  32. Martin GS, Mangialardi RJ, Wheeler AP, et al (2002) Albumin and furosemide therapy in hypoproteinemic patients with acute lung injury. Crit Care Med 30: 2175–2182

    Article  CAS  PubMed  Google Scholar 

  33. Martin GS, Moss M, Wheeler AP, et al (2005) A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury. Crit Care Med 33: 1681–1687

    Article  CAS  PubMed  Google Scholar 

  34. Finfer S, Bellomo R, Boyce N, et al (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350: 2247–2256

    Article  CAS  PubMed  Google Scholar 

  35. Shi HP, Deitch EA, Da Xu Z, Lu Q, Hauser CJ (2002) Hypertonic saline improves intestinal mucosa barrier function and lung injury after trauma-hemorrhagic shock. Shock 17: 496–501

    Article  PubMed  Google Scholar 

  36. Angle N, Hoyt DB, Coimbra R, et al (1998) Hypertonic saline resuscitation diminishes lung injury by suppressing neutrophil activation after hemorrhagic shock. Shock 9: 164–170

    Article  CAS  PubMed  Google Scholar 

  37. Mattox KL, Maningas PA, Moore EE, et al (1991) Prehospital hypertonic saline/dextran infusion for posttraumatic hypotension. The U.S.A. Multicenter Trial. Ann Surg 213: 482–491

    Article  CAS  PubMed  Google Scholar 

  38. Roch A, Blayac D, Ramiara P, et al (2007) Comparison of lung injury after normal or small volume optimized resuscitation in a model of hemorrhagic shock. Intensive Care Med 33: 1645–1654

    Article  PubMed  Google Scholar 

  39. Roch A, Castanier M, Mardelle V, et al (2008) Effect of hypertonic saline pre-treatment on ischemia-reperfusion lung injury in pig. J Heart Lung Transplant 27: 1023–1030

    Article  PubMed  Google Scholar 

  40. Mehta D, Bhattacharya J, Matthay MA, Malik AB (2004) Integrated control of lung fluid balance. Am J Physiol Lung Cell Mol Physiol 287: L1081–1090

    Article  Google Scholar 

  41. Perkins GD, McAuley DF, Thickett DR, Gao F (2006) The beta agonist lung injury trial (BALTI): a randomised placebo-controlled clinical trial. Am J Respir Crit Care Med 173: 281–287

    Article  CAS  PubMed  Google Scholar 

  42. Collee GG, Lynch KE, Hill RD, Zapol WM (1987) Bedside measurement of pulmonary capillary pressure in patients with acute respiratory failure. Anesthesiology 66: 614–620

    Article  CAS  PubMed  Google Scholar 

  43. Benzing A, Mols G, Guttmann J, et al (1998) Effect of different doses of inhaled nitric oxide on pulmonary capillary pressure and on longitudinal distribution of pulmonary vascular resistance in ARDS. Br J Anaesth 80: 440–446

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media Inc.

About this paper

Cite this paper

Roch, A., Guervilly, C., Papazian, L. (2010). Fluid Management in Acute Lung Injury and ARDS. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5562-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5562-3_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5561-6

  • Online ISBN: 978-1-4419-5562-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics