Advertisement

Making Better Use of Multiple Representations: How Fostering Metacognition Can Help

  • Alexander Renkl
  • Kirsten Berthold
  • Cornelia S. Grosse
  • Rolf Schwonke
Chapter
Part of the Springer International Handbooks of Education book series (SIHE, volume 28)

Abstract

Modern learning technology (e.g., hypermedia systems) usually provides information in various forms such as text, “realistic” pictures, formal graphs, or algebraic equations in order to foster learning. However, it is well known that learners usually make sub-optimal use of such multiple external representations. In this chapter, we present a series of experiments with older students (senior high-school and up) that analyzed the effects of two metacognitive intervention procedures: self-explanation prompts and “instruction for use” (information on how to use multiple representations). Basically, both interventions foster conceptual understanding and procedural skills. However, there are important boundary conditions. For example, if learners have little prior knowledge they cannot react productively to self-explanation prompts.

Keywords

Conceptual Understanding Conceptual Knowledge Procedural Knowledge Metacognitive Knowledge Instructional Support 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ainsworth, S. E. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183–198.CrossRefGoogle Scholar
  2. Ainsworth, S. E., Bibby, P. A., & Wood, D. J. (2002). Examining the effects of different multiple representational systems in learning primary mathematics. The Journal of the Learning Sciences, 11, 25–61.CrossRefGoogle Scholar
  3. Aleven, V., & Koedinger, K. (2000). Limitations of student control: Do students know when they need help? In G. Gauthier, C. Frasson, & K. VanLehn (Eds.), Proceedings of the 5th International Conference on Intelligent Tutoring Systems (pp. 292–303). Berlin: Springer.CrossRefGoogle Scholar
  4. Aleven, V., & Koedinger, K. R. (2002). An effective meta-cognitive strategy: Learning by doing and explaining with a computer-based Cognitive Tutor. Cognitive Science, 26, 147–179.CrossRefGoogle Scholar
  5. Atkinson, R. K., Renkl, A., & Merrill, M. M. (2003). Transitioning from studying examples to solving problems: Combining fading with prompting fosters learning. Journal of Educational Psychology, 95, 774–783.CrossRefGoogle Scholar
  6. Berthold, K., Eysink, T. H., & Renkl, A. (2009). Assisting self-explanation prompts are more effective than open prompts when learning with multiple representations. Instructional Science, 37, 345–363.CrossRefGoogle Scholar
  7. Berthold, K., & Renkl, A. (2009). Instructional aids to support a conceptual understanding of multiple representations. Journal of Educational Psychology, 101, 70–87.CrossRefGoogle Scholar
  8. Berthold, K., Röder, H., Knörzer, D., Kessler, W., & Renkl, A. (2011). The double-edged effects of explanation prompts. Computers in Human Behavior, 27, 69–75.CrossRefGoogle Scholar
  9. Carnegielearning.com (2011). The Carnegie learning web sites (retrieved 01/05/2011).Google Scholar
  10. Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8, 293–332.CrossRefGoogle Scholar
  11. Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145–182.CrossRefGoogle Scholar
  12. Chi, M. T. H., de Leeuw, N., Chiu, M. H., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439–477.Google Scholar
  13. Conati, C., & VanLehn, K. (2000). Toward computer-based support of meta-cognitive skills: A computational framework to coach self-explanation. International Journal of Artificial Intelligence in Education, 11, 398–415.Google Scholar
  14. de Jong, T., Ainsworth, S., Dobson, M., van der Hulst, A., Levonen, J., Reimann, P., Sime, J.-A., van Someren, M. W., Spada, H., & Swaak, J. (1998). Acquiring knowledge in science and mathematics: The use of multiple representations in technology-based learning environments. In M. van Someren, P. Reimann, H. P. A. Boshuizen, & T. de Jong (Eds.), Learning with multiple representations (pp. 9–40). Amsterdam: Pergamon.Google Scholar
  15. Efklides, A. (2008). Metacognition: Defining its facets and levels of functioning in relation to self-regulation and co-regulation. European Psychologist, 13, 277–287.CrossRefGoogle Scholar
  16. Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive developmental inquiry. American Psychologist, 34, 906–911.CrossRefGoogle Scholar
  17. Fonseca, B. A., & Chi, M. T. H. (2011). Instruction based on self-explanation. In R. E. Mayer & P. A. Alexander (Eds.), Handbook of research on learning and instruction (pp. 296–321). New York, NY: Routledge.Google Scholar
  18. Grosse, C. S., & Renkl, A. (2006). Effects of multiple solution methods in mathematics learning. Learning and Instruction, 16, 122–138.CrossRefGoogle Scholar
  19. Hübner, S., Nückles, M., & Renkl, A. (2010). Writing learning journals: Instructional support to overcome learning-strategy deficits. Learning and Instruction, 20, 18–29.CrossRefGoogle Scholar
  20. Kalyuga, S. (2010). Schema acquisition and sources of cognitive load. In J. Plass, R. Moreno, & R. Brünken (Eds.), Cognitive load theory and research in educational psychology (pp. 48–64). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  21. Kalyuga, S., Chandler, P., & Sweller, J. (1999). Managing split-attention and redundancy in multimedia instruction. Applied Cognitive Psychology, 13, 351–371.CrossRefGoogle Scholar
  22. Koedinger, K. R., & Aleven, V. (2007). Exploring the assistance dilemma in experiments with Cognitive Tutors. Educational Psychology Review, 19, 239–264.CrossRefGoogle Scholar
  23. Koedinger, K. R., & Corbett, A. T. (2006). Cognitive tutors: Technology bringing learning sciences to the classroom. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences. New York, NY: Cambridge University Press.Google Scholar
  24. Nelson, T. O. (1996). Consciousness and metacognition. American Psychologist, 51, 102–116.CrossRefGoogle Scholar
  25. Nielsen, J. (1994). Usability engineering. Boston, MA: Academic.Google Scholar
  26. Ozuru, Y., Briner, S., Best, R., & McNamara, D. S. (2010). Contributions of self-explanation to comprehension of high and low cohesion texts. Discourse Processes, 47, 641–667.CrossRefGoogle Scholar
  27. Paris, S. G., Lipson, M. Y., & Wixson, K. K. (1983). Becoming a strategic reader. Contemporary Educational Psychology, 8, 293–316.CrossRefGoogle Scholar
  28. Park, B., & Brünken, R. (2010). How to measure cognitive load in working memory while learning? An experimental dual-task study of continuous secondary tasks with internalized cues. Paper presented at the “4th International Cognitive Load Theory Conference 2010”, Hong Kong and Macau (China).Google Scholar
  29. Pressley, M., Wood, E., Woloshyn, V. E., Martin, V., King, A., & Menke, D. (1992). Encouraging mindful use of prior knowledge: Attempting to construct explanatory answers facilitates learning. Educational Psychologist, 27, 91–109.CrossRefGoogle Scholar
  30. Reimann, P., & Neubert, C. (2000). The role of self-explanation in learning to use a spreadsheet through examples. Journal of Computer Assisted Learning, 16, 316–325.CrossRefGoogle Scholar
  31. Renkl, A. (1997). Learning from worked-out examples: A study on individual differences. Cognitive Science, 21, 1–29.CrossRefGoogle Scholar
  32. Renkl, A. (2008). Lehren und Lernen im Kontext der Schule [Teaching and learning in schools]. In A. Renkl (Ed.), Lehrbuch Pädagogische Psychologie (pp. 109–153). Bern: Huber.Google Scholar
  33. Renkl, A. (2009). Wissenserwerb [Knowledge acquisition]. In E. Wild & J. Möller (Eds.), Pädagogische Psychologie (pp. 3–26). Berlin: Springer.CrossRefGoogle Scholar
  34. Renkl, A. (2011). Instruction based on examples. In R. E. Mayer & P. A. Alexander (Eds.), Handbook of research on learning and instruction (pp. 272–295). New York, NY: Routledge.Google Scholar
  35. Roll, I., Aleven, V., McLaren, B., & Koedinger, K. (2007). Designing for metacognition—applying Cognitive Tutor principles to metacognitive tutoring. Metacognition and Learning, 2, 125–140.CrossRefGoogle Scholar
  36. Roll, I., Aleven, V., McLaren, B. M., & Koedinger, K. R. (2011). Improving students’ help-seeking skills using metacognitive feedback in an intelligent tutoring system. Learning and Instruction, 21, 267–280.CrossRefGoogle Scholar
  37. Roy, M., & Chi, M. T. H. (2005). The self-explanation principle in multimedia learning. In R. E. Mayer (Ed.), Cambridge handbook of multimedia learning (pp. 271–286). New York, NY: Cambridge University Press.Google Scholar
  38. Schneider, W., & Bjorklund, D. F. (1998). Memory. In W. Damon, D. Kuhn, & R. S. Siegler (Eds.), Handbook of child psychology (Cognition, perception, and language, Vol. 2, pp. 467–521). New York: Wiley.Google Scholar
  39. Schraw, G. (1998). Promoting general metacognitive awareness. Instructional Science, 26, 113–125.CrossRefGoogle Scholar
  40. Schwonke, R., Berthold, K., & Renkl, A. (2009). How multiple external representations are used and how they can be made more useful. Applied Cognitive Psychology, 23, 1227–1243.CrossRefGoogle Scholar
  41. Schwonke, R., Ertelt, A., Otieno, C., Renkl, A., Aleven, V., & Salden, R (2013). Metacognitive support ­promotes an effective use of instructional resources in intelligent tutoring. Learning & Instruction, 23, 136–150.Google Scholar
  42. Schwonke, R., Renkl, A., Krieg, K., Wittwer, J., Aleven, V., & Salden, R. (2009). The worked-example effect: Not an artefact of lousy control conditions. Computers in Human Behavior, 25, 258–266.CrossRefGoogle Scholar
  43. Schworm, S., & Renkl, A. (2007). Learning argumentation skills through the use of prompts for self-explaining examples. Journal of Educational Psychology, 99, 285–296.CrossRefGoogle Scholar
  44. Seufert, T., & Brünken, R. (2006). Cognitive load and the format of instructional aids for coherence formation. Applied Cognitive Psychology, 20, 321–331.CrossRefGoogle Scholar
  45. Sweller, J. (2006). The worked example effect and human cognition. Learning and Instruction, 16, 165–169.CrossRefGoogle Scholar
  46. Walter, C., Cierniak, G., Bogdan, M., Rosenstiel, W., & Gerjets, P. (2010). Load adaptive tutor systems based on brain-computer interfaces. Paper presented at the “4th International Cognitive Load Theory Conference 2010”, Hong Kong and Macau (China).Google Scholar
  47. Weinstein, C. E., & Mayer, R. E. (1986). The teaching of learning strategies. In C. M. Wittrock (Ed.), Handbook of research in teaching (pp. 315–327). New York: Macmillan.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alexander Renkl
    • 1
  • Kirsten Berthold
    • 1
  • Cornelia S. Grosse
    • 1
  • Rolf Schwonke
    • 1
  1. 1.Department of PsychologyUniversity of FreiburgFreiburgGermany

Personalised recommendations