Advertisement

The Cauchy Problem in Banach Spaces

  • Viorel BarbuEmail author
Chapter
Part of the Springer Monographs in Mathematics book series (SMM)

Abstract

This chapter is devoted to the Cauchy problem associated with nonlinear quasi-accretive operators in Banach spaces. The main result is concerned with the convergence of the finite difference scheme associated with the Cauchy problem in general Banach spaces and in particular to the celebrated Crandall-Liggett exponential formula for autonomous equations, from which practically all existence results for the nonlinear accretive Cauchy problem follow in a more or less straightforward way.

Keywords

Hilbert Space Banach Space Cauchy Problem Strong Solution Mild Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Attouch, Familles d'opérateurs maximaux monotones et mesurabilité, Annali Mat. Pura Appl., CXX (1979), pp. 35–111.CrossRefMathSciNetGoogle Scholar
  2. 2.
    H. Attouch, Variational Convergence for Functions and Operators, Pitman, Boston, 1984.zbMATHGoogle Scholar
  3. 3.
    H. Attouch, A. Damlamian, Problèmes d'évolution dans les Hilbert et applications, J. Math. Pures Appl., 54 (1975), pp. 53–74.zbMATHMathSciNetGoogle Scholar
  4. 4.
    P. Aubin, A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.zbMATHGoogle Scholar
  5. 5.
    V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.zbMATHGoogle Scholar
  6. 6.
    V. Barbu, G. Da Prato, Some results for the reflection problems in Hilbert spaces, Control Cybern., 37 (2008), pp. 797–810.zbMATHMathSciNetGoogle Scholar
  7. 7.
    V. Barbu, A. Răşcanu, Parabolic variational inequalities with singular inputs, Differential Integral Equ., 10 (1997), pp. 67–83.zbMATHGoogle Scholar
  8. 8.
    V. Barbu, C. Marinelli, Variational inequalities in Hilbert spaces with measures and optimal stopping problems, Appl. Math. Optimiz., 57 (2008), pp. 237–262.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    V. Barbu, T. Precupanu, Convexity and Optimization in Banach Spaces, D. Reidel, Dordrecht, 1987.Google Scholar
  10. 10.
    Ph. Bénilan, Equations d'évolution dans un espace de Banach quelconque et applications, Thèse, Orsay, 1972.Google Scholar
  11. 11.
    Ph. Bénilan, H. Brezis, Solutions faibles d'équations d'évolution dans les espaces de Hilbert, Ann. Inst. Fourier, 22 (1972), pp. 311–329.zbMATHGoogle Scholar
  12. 12.
    Ph. Bénilan, S. Ismail, Générateurs des semigroupes nonlinéaires et la formule de Lie-Trotter, Annales Faculté de Sciences, Toulouse, VII (1985), pp. 151–160.Google Scholar
  13. 13.
    H. Brezis, Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North Holland, Amsterdam, 1975.Google Scholar
  14. 14.
    H. Brezis, Propriétés régularisantes de certaines semi-groupes nonlinéaires, Israel J. Math., 9 (1971), pp. 513–514.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    H. Brezis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to Nonlinear Functional analysis, E. Zarantonello (Ed.), Academic Press, New York, 1971.Google Scholar
  16. 16.
    H. Brezis, A. Pazy, Semigroups of nonlinear contrctions on convex sets, J. Funct. Anal., 6 (1970), pp. 367–383.CrossRefMathSciNetGoogle Scholar
  17. 17.
    H. Brezis, A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces, J. Funct. Anal., 9 (1971), pp. 63–74.CrossRefMathSciNetGoogle Scholar
  18. 18.
    R. Bruck, Asymptotic convergence of nonlinear contraction semigroups in Hilbert space, J. Funct. Anal., 18 (1975), pp. 15–26.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    O. Cârjă, M. Necula, I.I. Vrabie, Viability, Invariance and Applications, North-Holland Math. Studies, Amsterdam, 2007.zbMATHGoogle Scholar
  20. 20.
    E. Cépa, Problème de Skorohod multivoque, Ann. Probab., 26 (1998), pp. 500–532.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    P. Chernoff, Note on product formulas for opertor semi-groups, J. Funct. Anal., 2 (1968), pp. 238–242.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    M.G. Crandall, Nonlinear semigroups and evolutions generated by accretive operators, Nonlinear Functional Analysis and Its Applications, pp. 305–338, F.Browder (Ed.), American Mathematical Society, Providence, RI, 1986.Google Scholar
  23. 23.
    M.G. Crandall, L.C. Evans, On the relation of the operator ∂/∂s+∂/∂t to evolution governed by accretive operators, Israel J. Math., 21 (1975), pp. 261–278.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    M.G. Crandall, T.M. Liggett, Generation of semigroups of nonlinear transformations in general Banach spaces, Amer. J. Math., 93 (1971), pp. 265–298.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    M.G. Crandall, A. Pazy, Semigroups of nonlinear contractions and dissipative sets, J. Funct. Anal., 3 (1969), pp. 376–418.zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    M.G. Crandall, A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J. Math., 11 (1972), pp. 57–94.zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    C. Dafermos, M. Slemrod, Asymptotic behaviour of nonlinear contraction semigroups, J. Funct. Anal., 12 (1973), pp. 96–106.MathSciNetGoogle Scholar
  28. 28.
    G. Da Prato, Kolmogorov Equations for Stochastic PDEs, Birhkäuser Verlag, Basel, 2004.zbMATHGoogle Scholar
  29. 29.
    G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, UK, 1992.zbMATHGoogle Scholar
  30. 30.
    J. Goldstein, Approximation of nonlinear semigroups and ev olution equations, J. Math. Soc. Japan, 24 (1972), pp. 558–573.zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    A. Haraux, Nonlinear Evolution Equations. Global Behaviour of solutions, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1981.Google Scholar
  32. 32.
    T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19 (1967), pp. 508–520.zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    T. Kato, Accretive operators and nonlinear evolution equations in Banach spaces, Nonlinear Functional Analysis, Proc. Symp. Pure Math., vol. 13, F. Browder (Ed.), American Mathematical Society, (1970), pp. 138–161.Google Scholar
  34. 34.
    N. Kenmochi, Nonlinear parabolic variational inequalities with time-dependent constraints, Proc. Japan Acad., 53 (1977), pp. 163–166.zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Y. Kobayashi, Difference approximation of Cauchy problem for quasi-dissipative operators and generation of nonlinear semigroups, J. Math. Soc. Japan, 27 (1975), pp. 641–663.CrossRefGoogle Scholar
  36. 36.
    Y. Kobayashi, I. Miyadera, Donvergence and approximation of nonlinear semigroups, Japan-France Seminar, pp. 277–295, H.Fujita (Ed.), Japan Soc. Promotion Sci., Tokyo, 1978.Google Scholar
  37. 37.
    Y. Komura, Nonlinear semigroups in Hilbert spaces, J. Math. Soc. Japan, 19 (1967), pp. 508–520.CrossRefMathSciNetGoogle Scholar
  38. 38.
    Y. Komura, Differentiability of nonlinear semigroups, J. Math. Soc. Japan, 21 (1969), pp. 375–402.zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    N. Krylov, B. Rozovski, Stochastic Evolution Equations, Plenum, New York, 1981.Google Scholar
  40. 40.
    J.L. Lions, Quelques Méthodes de Resolution des Problèmes aux Limites Nonlinéaires, Dunod, Paris, 1969.Google Scholar
  41. 41.
    J.J. Moreau, Evolution problem associated with a moving convex set associated with a moving convex set in a Hilbert space, J. Differential Equ., 26 (1977), pp. 347–374.zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    G. Moroşanu, Nonlinear Evolution Equations and Applications, D. Reidel, Dordrecht, 1988.zbMATHGoogle Scholar
  43. 43.
    N. Pavel, Differential Equations, Flow Invariance and Applications, Research Notes Math., 113, Pitman, Boston, 1984.Google Scholar
  44. 44.
    N. Pavel, Nonlinear Evolution Equations, Operators and Semigroups, Lecture Notes, 1260, Springer-Verlag, New York, 1987.Google Scholar
  45. 45.
    A. Pazy, Semigroups of Linear Operators and Applications, Springer-Verlag, New York, 1979.Google Scholar
  46. 46.
    A. Pazy, The Lyapunov method for semigroups of nonlinear contractions in Banach spaces, J. Analyse Math., 40 (1982), pp. 239–262.CrossRefMathSciNetGoogle Scholar
  47. 47.
    J.C. Peralba, Un problème d'évolution relativ à un opérateur sous-différentiel dépendent du temps, C.R.A.S. Paris, 275 (1972), pp. 93–96.zbMATHMathSciNetGoogle Scholar
  48. 48.
    C. Prévot, M. Roeckner, A Concise Course on Stochastic Partial Differential Equations, Lect. Notes Math., 1905, Springer, New York, 2007.Google Scholar
  49. 49.
    S. Reich, Product formulas, nonlinear semigroups and accretive operators in Banach spaces, J. Funct. Anal., 36 (1980), pp. 147–168.zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    R.E. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, American Mathematical Society, Providence, RI, 1977.Google Scholar
  51. 51.
    U. Stefanelli, The Brezis-Ekeland principle for doubly nonlinear equations, SIAM J. Control Optim., 8 (2008), pp. 1615–1642.CrossRefMathSciNetGoogle Scholar
  52. 52.
    L. Véron, Effets régularisant de semi-groupes non linéaire dans des espaces de Banach, Ann. Fc. Sci. Toulouse Math., 1 (1979), pp. 171–200.zbMATHGoogle Scholar
  53. 53.
    A. Visintin, Extension of the Brezis-Ekeland-Nayroles principle to monotone operators (to appear).Google Scholar
  54. 54.
    I.I. Vrabie, Compactness Methods for Nonlinear Evolutions, Pitman Monographs and Surveys in Pure and Applied Mathematics, Second Edition, 75, Addison Wesley and Longman, Reading, MA, 1995.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Fac. MathematicsAl. I. Cuza UniversityIasiRomania

Personalised recommendations