Skip to main content

Quality Control Management

  • Chapter
  • First Online:
Practical Manual of In Vitro Fertilization

Abstract

The cornerstone of assisted reproductive technology (ART) is based upon quality control management. From instruments used to formulate media to methods to determine environmental properties such as temperature, relative humidity, and gas concentrations, all should be monitored and calibrated according to manufacturer’s specifications to insure their accuracy. In addition, attention to detail and the will to examine and improve our ART laboratory processes must be our main goals in our quest to provide a high quality, predictable product to the patients we serve. This review discusses quality control and quality assurance as they pertain to the ART laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayer JF, Jones EL, Dowling-Lacey D, Nehchiri F, Muasher SJ, Gibbons WE, Oehninger SC. Total quality improvement in the IVF laboratory: choosing indicators of quality. Reprod Biomed Online. 2003;7:695–9.

    Article  PubMed  Google Scholar 

  2. South Carolina Department of Health and Environmental Control Regulation Number 61-16—Standards for Licensing Hospitals and Institutional General Infirmaries. State Register. 1992;16(4):94–5.

    Google Scholar 

  3. Boone WR, Higdon III HL, Skelton WD. How to design and implement an assisted reproductive technology (ART) cleanroom. Clin Embryol. 2007;10(4):5–17, vi.

    Google Scholar 

  4. Worrilow KC, Huynh HT, Bower JB, Schillings WJ. Dissection of the high velocity air control (HVAC) system serving the in vitro fertilization (IVF) laboratory: the impact of ultraviolet-c band (UVC) irradiation on clinical pregnancy rates (CPR). Fertil Steril. 2007;88 Suppl 1:S89.

    Article  Google Scholar 

  5. Worrilow KC, Huynh HT, Gwozdziewicz JB, Schillings WA, Peters AJ. A retrospective analysis: the examination of a potential relationship between particulate (P) and volatile organic compound (VOC) levels in a class 100 IVF laboratory cleanroom (CR) and specific parameters of embryogenesis and rates of implantation (IR). Fertil Steril. 2001;76 Suppl 1:S15–6.

    Article  Google Scholar 

  6. Gilligan AV, Alouf CA. Air quality in the IVF laboratory—it’s the little things that matter. Fertil Mag. 2006;5:42–3.

    Google Scholar 

  7. Lavy G, Diamond MP, Pellicer A, Vaughn WK, DeCherney AH. The effect of the incubation temperature on the cleavage rate of mouse embryos in vitro. J In Vitro Fert Embryo Transf. 1988;5:167–70.

    Article  PubMed  CAS  Google Scholar 

  8. Almeida PA, Bolton VN. The effect of temperature fluctuations on the cytoskeletal organization and chromosomal constitution of the human oocyte. Zygote. 1995;3:357–65.

    Article  PubMed  CAS  Google Scholar 

  9. Pickering SJ, Braude PR, Johnson MH, Cant A, Currie J. Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte. Fertil Steril. 1990;54:102–8.

    PubMed  CAS  Google Scholar 

  10. Wang W-H, Meng L, Hackett RJ, Oldenbourg R, Keefe DL. Rigorous thermal control during intracytoplasmic sperm injection stabilizes the meiotic spindle and improves fertilization and pregnancy rates. Fertil Steril. 2002;77:1274–7.

    Article  PubMed  Google Scholar 

  11. Fischer B, Schumacher A, Hegele-Hartung C, Beier HM. Potential risk of light and room temperature exposure to preimplantation embryos. Fertil Steril. 1988;50:938–44.

    PubMed  CAS  Google Scholar 

  12. Schumacher A, Fischer B. Influence of visible light and room temperature on cell proliferation in preimplantation rabbit embryos. J Reprod Fertil. 1988;84:197–204.

    Article  PubMed  CAS  Google Scholar 

  13. Eng LA, Kornegay ET, Huntington J, Wellman T. Effects of incubation temperature and bicarbonate on maturation of pig oocytes in vitro. J Reprod Fertil. 1986;76:657–62.

    Article  PubMed  CAS  Google Scholar 

  14. de Castro e Paula LA, Hansen PJ. Interactions between oxygen tension and glucose concentration that modulate actions of heat shock on bovine oocytes during in vitro maturation. Theriogenology. 2007;68:763–70.

    Google Scholar 

  15. Ali J, Al-Natsha SD, Shahata MAM, Al-Bayeti AH, Joshi HN, Al-Badr MK, Flamerzi M, Hamsho A, Belnas T, Abdulla M. Effect of high environmental temperature on fertilization, zygote cleavage, embryo quality, pregnancy and abortion in human assisted reproduction cycles. Med Sci Res. 1999;27:565–7.

    Google Scholar 

  16. Higdon III HL, Blackhurst DW, Boone WR. Incubator management in an assisted reproductive technology laboratory. Fertil Steril. 2008;89:703–10.

    Article  PubMed  Google Scholar 

  17. Daniel Jr JC. Cleavage of mammalian ova inhibited by visible light. Nature. 1964;201:316–7.

    Article  PubMed  Google Scholar 

  18. Takahashi M, Saka N, Takahashi H, Kanai Y, Schultz RM, Okano A. Assessment of DNA damage in individual hamster embryos by comet assay. Mol Reprod Dev. 1999;54:1–7.

    Article  PubMed  CAS  Google Scholar 

  19. Yamauchi Y, Yanagimachi R, Horiuchi T. Full-term development of golden hamster oocytes following intracytoplasmic sperm head injection. Biol Reprod. 2002;67:534–9.

    Article  PubMed  CAS  Google Scholar 

  20. Okano A, Saka N, Takahashi M, Kanai Y. DNA damage in early hamster embryos exposed to fluorescent light. Theriogenology. 1997;47:310.

    Article  Google Scholar 

  21. Nakayama T, Noda Y, Goto Y, Mori T. Effects of visible light and other environmental factors on the production of oxygen radicals by hamster embryos. Theriogenology. 1994;41:499–510.

    Article  PubMed  CAS  Google Scholar 

  22. Barlow P, Puissant F, Van der Zwalmen P, Vandromme J, Trigaux P, Leroy F. In vitro fertilization, development, and implantation after exposure of mature mouse oocytes to visible light. Mol Reprod Dev. 1992;33:297–302.

    Article  PubMed  CAS  Google Scholar 

  23. Kruger TF, Stander FSH. The effect of fluorescent light on the cleavage of two-cell mouse embryos. S Afr Med J. 1985;68:744–5.

    CAS  Google Scholar 

  24. Jackson KV, Kiessling AA. Fertilization and cleavage of mouse oocytes exposed to the conditions of human oocyte retrieval for in vitro fertilization. Fertil Steril. 1989;51:675–81.

    PubMed  CAS  Google Scholar 

  25. Bielanski A, Hare WCD. Development in vitro of bovine embryos after exposure to continuous helium/neon laser light. Theriogenology. 1992;37:192.

    Article  Google Scholar 

  26. Hirao Y, Yanagimachi R. Detrimental effect of visible light on meiosis of mammalian eggs in vitro. J Exp Zool. 1978;206:365–70.

    Article  PubMed  CAS  Google Scholar 

  27. Ottosen LDM, Hindkjaer J, Ingerslev J. Light exposure of the ovum and preimplantation embryo during ART procedures. J Assist Reprod Genet. 2007;24:99–103.

    Article  PubMed  Google Scholar 

  28. Takahashi M, Saka N, Takahashi H, Kanai Y, Schultz RM, Okano A. Assessment of DNA damage in individual hamster embryos by comet assay. Mol Reprod Dev. 1999;54:1–7.

    Article  PubMed  CAS  Google Scholar 

  29. Umaoka Y, Noda Y, Nakayama T, Narimoto K, Mori T, Iritani A. Effect of visual light on in vitro embryonic development in the hamster. Theriogenology. 1992;38:1043–54.

    Article  PubMed  CAS  Google Scholar 

  30. Rauth AM. Effects of ultraviolet light on mammalian cells in culture. In: Ebert M, Howard A, editors. Current topics in radiation research. Amsterdam: North-Holland Publishing; 1970. p. 195–248.

    Google Scholar 

  31. Bradley MO, Sharkey NA. Mutagenicity and toxicity of visible fluorescent light to cultured mammalian cells. Nature. 1977;266:724–6.

    Article  PubMed  CAS  Google Scholar 

  32. Noda Y, Goto Y, Umaoka Y, Shiotani M, Nakayama T, Mori T. Culture of human embryos in alpha modification of Eagle’s medium under low oxygen tension and low illumination. Fertil Steril. 1994;62:1022–7.

    PubMed  CAS  Google Scholar 

  33. IAQ TfS Action Kit. IAQ reference guide: appendix H—mold and moisture. 2010. http://www.epa.gov/iaq/schools/tfs/guideh.html. Accessed 30 Aug 2010.

  34. Wamil BD, Holcomb RR, Wamil AW, Rogers BJ, McLean MJ. Effect of static magnetic fields on human sperm penetration. Fertil Steril. 1992;58:S166.

    Google Scholar 

  35. Zusman I, Yaffe P, Pinus H, Ornoy A. Effects of pulsing electromagnetic fields on the prenatal and postnatal development in mice and rats: in vivo and in vitro studies. Teratology. 1990;42:157–70.

    Article  PubMed  CAS  Google Scholar 

  36. Turczynski C, Frilot C, Sartor S, Webster B, Marino A. Electro-magnetic fields: a quality control issue for the IVF laboratory. Embryol Newslett. 1997;Fall:2–11, vi.

    Google Scholar 

  37. Lane M, Mitchell M, Cashman KS, Feil D, Wakefield S, Zander-Fox DL. To QC or not to QC: the key to a consistent laboratory? Reprod Fertil Dev. 2008;20:23–32.

    Article  PubMed  Google Scholar 

  38. Carney EW, Bavister BD. Regulation of hamster embryo development in vitro by carbon dioxide. Biol Reprod. 1987;36:1155–63.

    Article  PubMed  CAS  Google Scholar 

  39. Zhao Y, Chauvet PJ-P, Alper SL, Baltz JM. Expression and function of bicarbonate/chloride exchangers in the preimplantation mouse embryo. J Biol Chem. 1995;270:24428–34.

    Article  PubMed  CAS  Google Scholar 

  40. Plante L, Bousquet D, Guay P. Effect of different culture conditions on in vitro bovine embryo development. Theriogenology. 1986;25:182.

    Article  Google Scholar 

  41. Blandau R, Jensen L, Rumery R. Determination of the pH values of the reproductive-tract fluids of the rat during heat. Fertil Steril. 1958;9:207–14.

    PubMed  CAS  Google Scholar 

  42. John DP, Kiessling AA. Improved pronuclear mouse embryo development over an extended pH range in Ham’s F-10 medium without protein. Fertil Steril. 1988;49:150–5.

    PubMed  CAS  Google Scholar 

  43. Boone WR, Shapiro SS. Quality control in the in vitro fertilization laboratory. Theriogenology. 1990;33:23–50.

    Article  Google Scholar 

  44. King GB, Caldwell WE. Nitrogen and the atmosphere. In: College Chemistry. New York: American Book Company; 1963. p. 293–302.

    Google Scholar 

  45. Gardner DK. Oxygen & embryo culture. Fertil World. 2005;3:8–9.

    Google Scholar 

  46. Mastroianni Jr L, Jones R. Oxygen tension within the rabbit fallopian tube. J Reprod Fertil. 1965;9:99–102.

    Article  PubMed  Google Scholar 

  47. Ross RN, Graves CN. O2 levels in the female rabbit reproductive tract. J Anim Sci. 1974;39:994.

    Google Scholar 

  48. Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993;99:673–9.

    Article  PubMed  CAS  Google Scholar 

  49. Gardner DK, Lane M, Johnson J, Wagley L, Stevens J, Schoolcraft WB. Reduced oxygen tension increases blastocyst development, differentiation, and viability. Fertil Steril. 1999;72 Suppl 1:S30–1.

    Google Scholar 

  50. Whitten WK. Nutrient requirements for the culture of preimplantation embryos in vitro. Adv Biosci. 1971;6:129–41.

    Google Scholar 

  51. Quinn P, Harlow GM. The effect of oxygen on the development of preimplantation mouse embryos in vitro. J Exp Zool. 1978;206:73–80.

    Article  PubMed  CAS  Google Scholar 

  52. McKiernan SH, Bavister BD. Environment variables influence in vitro development of hamster 2-cell embryos to the blastocyst stage. Biol Reprod. 1990;43:404–13.

    Article  PubMed  CAS  Google Scholar 

  53. Kishi J, Noda Y, Narimoto K, Umaoka Y, Mori T. Block to development in cultured rat 1-cell embryos is overcome by using medium HECM-1. Hum Reprod. 1991;6:1445–8.

    PubMed  CAS  Google Scholar 

  54. Li J, Foote RH. Culture of rabbit zygotes into blastocysts in protein-free medium with one to twenty percent oxygen. J Reprod Fertil. 1993;98:163–7.

    Article  PubMed  CAS  Google Scholar 

  55. Tervit HR, Whittingham DG, Rowson LEA. Successful culture in vitro of sheep and cattle ova. J Reprod Fertil. 1972;30:493–7.

    Article  PubMed  CAS  Google Scholar 

  56. Wright Jr RW. Successful culture in vitro of swine embryos to the blastocyst stage. J Anim Sci. 1977;44:854–8.

    PubMed  CAS  Google Scholar 

  57. Thompson JGE, Simpson AC, Pugh PA, Donnelly PE, Tervit HR. Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J Reprod Fertil. 1990;89:573–8.

    Article  PubMed  CAS  Google Scholar 

  58. Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993;99:673–9.

    Article  PubMed  CAS  Google Scholar 

  59. Gigli I, Byrd DD, Fortune JE. Effects of oxygen tension and supplements to the culture medium on activation and development of bovine follicles in vitro. Theriogenology. 2006;66:344–53.

    Article  PubMed  CAS  Google Scholar 

  60. Byatt-Smith JG, Leese HJ, Gosden RG. An investigation by mathematical modeling of whether mouse and human preimplantation embryos in static culture can satisfy their demands for oxygen by diffusion. Hum Reprod. 1991;6:52–7.

    PubMed  CAS  Google Scholar 

  61. Kea B, Gebhardt J, Watt J, Westphal LM, Lathi RB, Milki AA, Behr B. Effect of reduced oxygen concentrations on the outcome of in vitro fertilization. Fertil Steril. 2007;87:213–6.

    Article  PubMed  Google Scholar 

  62. Boone WR, Higdon III HL, Johnson JE. Quality management issues in the assisted reproduction laboratory. J Reprod Stem Cell Biotechnol. 2010;1(1):30–107.

    Google Scholar 

  63. Nagata Y, Yoshimitsu K, Shirakawa K. Setting standards for the levels of endotoxins in the embryo culture media of IVF-ET. J Assist Reprod Genet. 1993;10(6):165.

    Google Scholar 

  64. Miller KF, Goldberg JM, Collins RL. The result of an interlaboratory comparison of embryo culture media is dependent on culture method. J Assist Reprod Genet. 1993;Suppl:226.

    Google Scholar 

  65. Shimada M, Kawano N, Terada T. Delay of nuclear maturation and reduction in developmental competence of pig oocytes after mineral oil overlay of in vitro maturation media. Reproduction. 2002;124:557–64.

    Article  PubMed  CAS  Google Scholar 

  66. Van den Abbeel E, Vitrier S, Lebrun F, Van Steirteghem A. Optimized mouse bioassays for the detection of embryology contaminants. Hum Reprod. 1999;14 Suppl 1:114.

    Google Scholar 

  67. Fleming TP, Pratt HPM, Braude PR. The use of mouse preimplantation embryos for quality control of culture reagents in human in vitro fertilization programs: a cautionary note. Fertil Steril. 1987;47:858–60.

    PubMed  CAS  Google Scholar 

  68. Provo MB, Herr C. Washed paraffin oil becomes toxic to mouse embryos upon exposure to sunlight. Theriogenology. 1998;49:21.

    Article  Google Scholar 

  69. Otsuki J, Nagai Y, Chiba K. Peroxidation of mineral oil used in droplet culture is detrimental to fertilization and embryo development. Fertil Steril. 2007;88:741–3.

    Article  PubMed  CAS  Google Scholar 

  70. Bavister BD. A consistently successful procedure for in vitro fertilization of golden hamster eggs. Gamete Res. 1989;23:139–58.

    Article  PubMed  CAS  Google Scholar 

  71. Borque C, Pintado B, García P, Sánchez R. Effect of washing oil on in vitro development of mouse embryos. Theriogenology. 1996;45:206.

    Article  Google Scholar 

  72. Li H, Zhang LX, Zhong Y, Zhu K, Zhang T, Wang M-K. Effect of washing mineral oil on development of mouse embryos in vitro and in vivo after embryo transfer. Biol Reprod. 2006;Suppl:133.

    Google Scholar 

  73. Boone WR, Johnson JE. The effect of the culture vessel and insemination method on the in vitro fertilization and development of human oocytes. J Assist Reprod Genet. 1997;14:233–5.

    Article  PubMed  CAS  Google Scholar 

  74. Dinnie H, Daniele A, Labrie S, Monte L, Grow D, Arny M. Microdrop insemination for optimal fertilization in an in vitro fertilization (IVF) program: a prospective study comparing sibling oocytes. Fertil Steril. 1995;64 Suppl 1:S257.

    Google Scholar 

  75. Cunningham KJ, McCarthy CB, Russell JB. The pH change in a microdroplet system under oil with different numbers of sperm added for insemination. Fertil Steril. 1994;62 Suppl 1:S47.

    Google Scholar 

  76. Wiley LM, Yamami S, Van Muyden D. Effect of potassium concentration, type of protein supplement, and embryo density on mouse preimplantation development in vitro. Fertil Steril. 1986;45:111–9.

    PubMed  CAS  Google Scholar 

  77. Paria BC, Dey SK. Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors. Proc Natl Acad Sci. 1990;87:4756–60.

    Article  PubMed  CAS  Google Scholar 

  78. Canesco RS, Sparks AET, Pearson RE, Gwazdauskas FC. Embryo density and medium volume effects on early murine embryo development. J Assist Reprod Genet. 1992;9:454–7.

    Article  Google Scholar 

  79. Lane M, Gardner DK. Effect of incubation volume and embryo density on the development and viability of mouse embryos in vitro. Hum Reprod. 1992;7:558–92.

    PubMed  CAS  Google Scholar 

  80. Salahuddin S, Ookutsu S, Goto K, Nakanishi Y, Nagata Y. Effects of embryo density and co-culture of unfertilized oocytes on embryonic development of in-vitro fertilized mouse embryos. Hum Reprod. 1995;10:2382–5.

    PubMed  CAS  Google Scholar 

  81. O’Neill C. Role of autocrine mediators in the regulation of embryo viability: lessons from animal models. J Assist Reprod Genet. 1998;15:460–5.

    Article  PubMed  Google Scholar 

  82. Gil MA, Abeydeera LR, Day BN, Vazquez JM, Roca J, Martinez EA. Effect of the volume of medium and number of oocytes during in vitro fertilization on embryo development in pigs. Theriogenology. 2003;60:767–76.

    Article  PubMed  Google Scholar 

  83. Veeck LL, Wortham Jr JWE, Witmyer J, Sandow BA, Acosta AA, Garcia JE, Jones GS, Jones Jr HW. Maturation and fertilization of morphologically immature human oocytes in a program of in vitro fertilization. Fertil Steril. 1983;39:594–602.

    PubMed  CAS  Google Scholar 

  84. Ali J. Continuous ultra micro-drop (cUMD) culture yields higher pregnancy & implantation rates than either larger-drop culture or fresh-medium replacement. Clin Embryol. 2004;7(2):1–17.

    Google Scholar 

  85. Moinipanah R, Anderson R, Montgomery J, Steinberg J, Quinn P. Higher rates of fertilization in vitro of human oocytes using a smaller volume of medium for coincubation of gametes. Fertil Steril. 1994;62 Suppl 1:S228.

    Google Scholar 

  86. Goovaerts IGF, Leroy JLMR, Van Soom A, De Clercq JBP, Anries S, Bols PEJ. Effect of cumulus cell coculture and oxygen tension on the in vitro developmental competence of bovine zygotes cultured singly. Theriogenology. 2009;71:729–38.

    Article  PubMed  CAS  Google Scholar 

  87. Wagner-Coughlin CM, Maravilla AE, Nikurs AR, Scoccia B, Scommegna A, Marut EL. Microdroplets under oil improves embryo quality even when an isolette is used. Fertil Steril. 1994;62 Suppl 1:S177.

    Google Scholar 

  88. Stokes PJ, Abeydeera LR, Leese HJ. Development of porcine embryo in vivo and in vitro: evidence for embryo ‘cross talk’ in vitro. Dev Biol. 2005;284:62–71.

    Article  PubMed  CAS  Google Scholar 

  89. Ray BD, McDermott A, Wardle PG, Corrigan E, Mitchell JD, McLaughlin EA, Sykes JAC, Foster PA, Hull MGR. In vitro fertilization: fertilization failure due to toxic catheters. J Vitro Fertil Embryo Transf. 1987;4:58–61.

    Article  CAS  Google Scholar 

  90. Bertheussen K, Holst N, Forsdahl F, Høie KE. A new cell culture assay for quality control in IVF. Hum Reprod. 1989;4:531–5.

    PubMed  CAS  Google Scholar 

  91. Prien SD, Miller A, Roark B, Lox CD. Can cultured human luteinized-granulosa cells be used to screen media quality in an ART program? Fertil Steril. 1998;70 Suppl 1:S56–7.

    Google Scholar 

Download references

Acknowledgment

The authors thank Ms. Jane E. Johnson for suggested improvements and proofreading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Boone PhD, HCLD (ABB) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boone, W.R., Higdon, H.L. (2012). Quality Control Management. In: Nagy, Z., Varghese, A., Agarwal, A. (eds) Practical Manual of In Vitro Fertilization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1780-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1780-5_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1779-9

  • Online ISBN: 978-1-4419-1780-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics