Oxygen Consumption as an Indicator of Oocyte and Embryo Viability

Chapter

Abstract

Oxygen consumption has been regarded as a valuable parameter for evaluating oocyte and embryo metabolism and seems to provide an alternative approach for assessing their developmental potential prior to transfer. This chapter will detail all aspects related to the oxygen-consumption measurements performed using oxygen microsensors, and describe how oxygen consumption correlates with morphology, developmental stage, sex, chromosomal and genetic background, reactive oxygen species production and viability of the measured oocytes/embryos following transfer. Additionally, it will discuss how oxygen consumption can provide a means to evaluate mammalian embryo quality and possibly complement other selection methodologies currently used within a clinical setting.

Keywords

Oxygen consumption Embryo metabolism Oocyte quality Embryo quality Oocyte embryo viability Embryoscope 

Notes

Acknowledgments

I thank Dr. Don Rieger for his critical review of the manuscript.

References

  1. 1.
    Leese H. What does an embryo need? Hum Fertil. 2003;6:180–5.CrossRefGoogle Scholar
  2. 2.
    Overström EW. In vitro assessment of blastocyst differentiation. In: Bavister BD, editor. The mammalian preimplantation embryo. 1st ed. New York: Plenum Press; 1987. p. 95–116.CrossRefGoogle Scholar
  3. 3.
    Barnett DK, Bavister BD. What is the relationship between the metabolism of preimplantation embryos and their developmental competence? Mol Reprod Dev. 1996;43:105–33.PubMedCrossRefGoogle Scholar
  4. 4.
    Houghton FD, Thompson JG, Kennedy CJ, Leese HJ. Oxygen consumption and energy metabolism of the early mouse embryo. Mol Reprod Dev. 1996;44:476–85.PubMedCrossRefGoogle Scholar
  5. 5.
    Lopes AS, Madsen SE, Ramsing N, Løvendahl P, Greve T, Callesen H. Respiration of individual bovine in vivo and in vitro-produced embryos: correlation with viability following transfer. Hum Reprod. 2007;22:558–66.PubMedCrossRefGoogle Scholar
  6. 6.
    Scott L, Berntsen J, Davies D, Gundersen J, Hill J, Ramsing N. Symposium: innovative techniques in human embryo viability assessment. Human oocyte respiration-rate measurement—potential to improve oocyte and embryo selection? Reprod Biomed Online. 2008;17:461–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Jansen RP, de Boer K. The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol Cell Endocrinol. 1998;145:81–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Motta PM, Nottola SA, Makabe S, Heyn R. Mitochondrial morphology in human fetal and adult female germ cells. Hum Reprod. 2000;15:129–47.PubMedCrossRefGoogle Scholar
  9. 9.
    Dumollard R, Ward Z, Carroll J, Duchen MR. Regulation of redox metabolism in the mouse oocyte and embryo. Development. 2007;134:455–65.PubMedCrossRefGoogle Scholar
  10. 10.
    May-Panloup P, Chretien MF, Malthiery Y, Reynier P. Mitochondrial DNA in the oocyte and the developing embryo. Curr Top Dev Biol. 2007;77:51–83.PubMedCrossRefGoogle Scholar
  11. 11.
    Shoubridge EA, Wai T. Mitochondrial DNA and the mammalian oocyte. Curr Top Dev Biol. 2007;77:87–111.PubMedCrossRefGoogle Scholar
  12. 12.
    Van Blerkom J. Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction. 2004; 128:269–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Van Blerkom J. Mitochondria as regulatory forces in oocytes, preimplantation embryos and stem cells. Reprod Biomed Online. 2008;16:553–69.PubMedCrossRefGoogle Scholar
  14. 14.
    Trimarchi JR, Liu L, Porterfield DM, Smith PJ, Keefe DL. Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol Reprod. 2000;62:1866–74.PubMedCrossRefGoogle Scholar
  15. 15.
    Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993; 99:673–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Leese HJ. Metabolic control during preimplantation mammalian development. Hum Reprod Update. 1995;1:63–72.PubMedCrossRefGoogle Scholar
  17. 17.
    Harvey A. Expression of hypoxia-inducible factors during bovine preimplantation embryo development. Ph.D. Thesis, Faculty of Heath Sciences, University of Adelaide. Adelaide, Australia: The University of Adelaide Press; 2003.Google Scholar
  18. 18.
    Fridhandler I, Hafez ESE, Pincus G. Developmental changes in the respiratory activity of rabbit ova. Exp Cell Res. 1957; 13:132–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Mills RM, Brinster RL. Oxygen consumption of preimplantation mouse embryos. Exp Cell Res. 1967;47:337–44.CrossRefGoogle Scholar
  20. 20.
    Magnusson C, Hillensjo T, Hamberger L, Nilsson L. Oxygen consumption by human oocytes and blastocysts grown in vitro. Hum Reprod. 1986;1:183–4.PubMedGoogle Scholar
  21. 21.
    Nilsson BO, Magnusson C, Widehn S, Hillensjo T. Correlation between blastocyst oxygen consumption and trophoblast cytochrome oxidase reaction at initiation of implantation of delayed mouse blastocysts. J Embryol Exp Morphol. 1982;71:75–82.PubMedGoogle Scholar
  22. 22.
    Overström EW, Duby RT, Dobrinsky J, Roche JF. Viability and ­oxidative metabolism of the bovine blastocyst. Theriogenology. 1992;37:269 (abstract).Google Scholar
  23. 23.
    Thompson JG, Partridge RJ, Houghton FD, Cox CI, Leese HJ. Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J Reprod Fertil. 1996;106:299–306.PubMedCrossRefGoogle Scholar
  24. 24.
    Trimarchi JR, Liu L, Porterfield DM, Smith PJ, Keefe DL. A non-invasive method for measuring preimplantation embryo physiology. Zygote. 2000;8:15–24.PubMedCrossRefGoogle Scholar
  25. 25.
    Shiku H, Shiraishi T, Ohya H, Matsue T, Abe H, Hoshi H, Kobayashi M. Oxygen consumption of single bovine embryos probed by scanning electrochemical microscopy. Anal Chem. 2001;73:3751–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Donnay I. Metabolic markers of embryo viability. In: Van Soom A, Boerjan M, editors. Assessment of mammalian embryo quality: invasive and non-invasive techniques. 1st ed. Dordrecht, The Netherlands: Kluwer Academic Publishers; 2002. p. 57–94.CrossRefGoogle Scholar
  27. 27.
    Lopes AS, Larsen LH, Ramsing N, Løvendahl P, Räty M, Peippo J, Greve T, Callesen H. Respiration rates of individual bovine in vitro produced embryos measured with a novel, non-invasive and rapid microsensor system. Reproduction. 2005;130:669–79.PubMedCrossRefGoogle Scholar
  28. 28.
    Ottosen LDM. Oxygen and embryo transfer techniques. Aahrus, Denmark: Unisense; 2002.Google Scholar
  29. 29.
    Ottosen LD, Hindkjaer J, Lindenberg S, Ingerslev HJ. Murine ­pre-embryo oxygen consumption and developmental competence. J Assist Reprod Genet. 2007;24:359–65.PubMedCrossRefGoogle Scholar
  30. 30.
    Lopes AS, Wrenzychi C, Ramsing N, Herrmann D, Niemann H, Løvendahl P, Greve T, Callesen H. Respiration rates correlate with mRNA expression of G6PD and GLUT1 genes in individual bovine in vitro-produced blastocysts. Theriogenology. 2007;68:223–36.PubMedCrossRefGoogle Scholar
  31. 31.
    Lopes AS, Lane M, Thompson JG. Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes. Hum Reprod. 2010;25(11):2762–73.PubMedCrossRefGoogle Scholar
  32. 32.
    Scott L, Hill J, Ramsing N, Gundersen J. Respiration measurements of human oocytes and embryos: Potential for selection? In: New approaches for non-invasive embryo quality assessment—proceedings of the ESHRE campus 2008. Tours, France: European Society of Human Reproduction and Embryology; 2008. p. 93–105.Google Scholar
  33. 33.
    Gundersen JK, Ramsing NB, Callesen H. Embryo quality assessment by respiration rate measurements and image analysis of time-lapse images during embryo development. Acta Obstet Gynecol Scand. 2006;86:119 (abstract).Google Scholar
  34. 34.
    Ramsing NB, Callesen H. Embryo quality assessment by respiration rate measurements and image analysis of time-lapse images during embryo development. J Reproduktionsmed Endokrinol. 2006;3:267 (abstract).Google Scholar
  35. 35.
    Tejera A, Herreros J, Romero P, De los Santos MJ, Remohí J, Meseguer M. Análisis de la calidad ovocitaria mediante el consumo de oxígeno; relación con fecundación, desarrollo y calidad embrionaria. Asebir. 2009;14:90 (abstract).Google Scholar
  36. 36.
    Tejera A, Herrero J, De los Santos MJ, Garrido N, Ramsing N, Meseguer M. Oxygen consumption is a quality marker for human oocyte competence conditioned by ovation stimulation regimens.Fertil Steril. 2011;96:618–23.Google Scholar
  37. 37.
    Leese HJ, Sturmey RG, Baumann CG, McEvoy TG. Embryo viability and metabolism: obeying the quiet rules. Hum Reprod. 2007;22:3047–50.PubMedCrossRefGoogle Scholar
  38. 38.
    Callesen H, Larsen LH, Damgaard L, Gundersen JK, Lopes AS, Greve T, et al. Improved embryo selection using respirometry. Hum Reprod. 2005;20:75 (abstract).Google Scholar
  39. 39.
    Harvey AJ, Kind KL, Thompson JG. REDOX regulation of early embryo development. Reproduction. 2002;123:479–86.PubMedCrossRefGoogle Scholar
  40. 40.
    Harvey AJ, Kind KL, Pantaleon M, Armstrong DT, Thompson JG. Oxygen-regulated gene expression in bovine blastocysts. Biol Reprod. 2004;71:1108–19.PubMedCrossRefGoogle Scholar
  41. 41.
    Tejera A, Herrero J, Ramsing N, Garrido N, Grau N, Meseguer M. Time-dependent embryo respiration patterns from 47741 measurements in 575 human embryos showed increasing differences between implanting and non-implanting embryos. Hum Reprod. 2011;26(Suppl 1):61 (abstract).PubMedCrossRefGoogle Scholar
  42. 42.
    Agung B, Otoi T, Abe H, Hoshi H, Murakami M, Karja NW, Murakami MK, Wongsrikeao P, Watari H, Suzuki T. Relation between oxygen consumption and sex of bovine in vitro fertilized embryos. Reprod Domest Anim. 2005;40:51–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Manser RC, Leese HJ, Houghton FD. Effect of inhibiting nitric oxide production on mouse preimplantation embryo development and metabolism. Biol Reprod. 2004;71:528–33.PubMedCrossRefGoogle Scholar
  44. 44.
    Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod. 2008;14:667–72.PubMedCrossRefGoogle Scholar
  45. 45.
    Kaidi S, Bernard S, Lambert P, Massip A, Dessy F, Donnay I. Effect of conventional controlled-rate freezing and vitrification on morphology and metabolism of bovine blastocysts produced in vitro. Biol Reprod. 2001;65:1127–34.PubMedCrossRefGoogle Scholar
  46. 46.
    Donnay I, Feugang JM, Bernard S, Marchandise J, Pampfer S, Moens A, Dessy F. Impact of adding 5.5 mM glucose to SOF medium on the development, metabolism and quality of in vitro produced bovine embryos from the morula to the blastocyst stage. Zygote. 2002;10:189–99.PubMedCrossRefGoogle Scholar
  47. 47.
    Abe H, Shiku H, Aoyagi S, Matsue T, Hoshi H. Respiration activity of bovine embryos cultured in serum-free and serum-containing media. Reprod Fertil Dev. 2005;17:215 (abstract).Google Scholar
  48. 48.
    Eckert J, Pugh PA, Thompson JG, Niemann H, Tervit HR. Exogenous protein affects development competence and metabolic activity of bovine pre-implantation embryos in vitro. Reprod Fertil Dev. 1998;10:327–32.PubMedCrossRefGoogle Scholar
  49. 49.
    Hooper K, Lane M, Gardner DK. Reduced oxygen concentration increases mouse embryo development and oxidative metabolism. Theriogenology. 2001;55:334 (abstract).Google Scholar
  50. 50.
    Sakagami N, Yamamoto T, Akiyama K, Nakazawa Y, Kojima N, Nishida K, et al. Viability of porcine embryos after vitrification using water-soluble pullulan films. J Reprod Dev. 2010;56(2):279–84.Google Scholar
  51. 51.
    Yamanaka M, Hashimoto S, Amo A, Ito-Sasaki T, Abe H, Morimoto Y. Developmental assessement of human vitrifed-warmed blastocysts based on oxygen consumption. Hum Reprod. 2011;26: 3366–71.PubMedCrossRefGoogle Scholar
  52. 52.
    Hancock JT, Desikan R, Neill SJ. Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans. 2001; 29:345–50.PubMedCrossRefGoogle Scholar
  53. 53.
    Navot D, Bergh PA, Williams MA, Garrisi GJ, Guzman I, Sandler B, Grunfeld L. Poor oocyte quality rather than implantation failure as a cause of age-related decline in female fertility. Lancet. 1991;337:1375–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Gordon K. Gonadotrophin-releasing hormone antagonists implications for oocyte quality and uterine receptivity. Ann N Y Acad Sci. 2001;943:49–54.PubMedCrossRefGoogle Scholar
  55. 55.
    Baart EB, Martini E, Eijkemans MJ, Van Opstal D, Beckers NG, Verhoeff A, Macklon NS, Fauser BC. Milder ovarian stimulation for in-vitro fertilization reduces aneuploidy in the human preimplantation embryo: a randomized controlled trial. Hum Reprod. 2007;22:980–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Hazout A. Oocyte quality and ovarian reserve. J Gynecol Obstet Biol Reprod (Paris). 2006;35:2S35–6.Google Scholar
  57. 57.
    Alviggi C, Humaidan P, Howles CM, Tredway D, Hillier SG. Biological versus chronological ovarian age: implications for assisted reproductive technology. Reprod Biol Endocrinol. 2009; 7:101.PubMedCrossRefGoogle Scholar
  58. 58.
    Tejera A, Herrero J, Ramsing N, Pellicer A, Garrido N, Garu N, De los Santos MJ, Meseguer M. Quantification of oocyte quality through respiration patterns correlates oxygen consumption with fertilization and subsequent implantation Hum Reprod. 2010; 25(Suppl 1):13–14 (abstract).Google Scholar
  59. 59.
    Overström EW, Burke PA, Hagopian SS, Selgraph JP. Blastocyst oxidative metabolism and embryo viability. J Cell Biol. 1989;107:607 (abstract).Google Scholar
  60. 60.
    Lopes AS, Greve T, Callesen H. Quantification of embryo quality by respirometry. Theriogenology. 2007;67:21–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Reproductive Medicine Unit - Heilig Hart HospitalLeuven Institute for Fertility and Embryology (LIFE)LeuvenBelgium

Personalised recommendations