Skip to main content

Livestock Production via Micromanipulation

  • Chapter
  • First Online:

Abstract

The use of micromanipulation techniques in the production of livestock mammals, focusing on intracytoplasmic sperm injection (ICSI) and the pig, Sus scrofa, is discussed in this chapter. ICSI is a powerful method for assisted fertilization. It is typically employed in cases in which semen characteristics are insufficient for conventional in vitro fertilization (IVF). Unlike IVF, ICSI mechanically delivers the sperm deep inside the egg cytoplasm by injection through a micropipette.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Uehara T, Yanagimachi R. Microsurgical injection of spermatozoa into hamster eggs with subsequent transformation of sperm nuclei into male pronuclei. Biol Reprod. 1976;15:467–70.

    Article  PubMed  CAS  Google Scholar 

  2. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340:17–8.

    Article  PubMed  CAS  Google Scholar 

  3. Garcia-Roselló E, Garcia-Mengual E, Coy P, Alfonso J, Silvestre MA. Intracytoplasmic sperm injection in livestock species: an update. Reprod Domest Anim. 2009;44:143–51.

    Article  PubMed  Google Scholar 

  4. Morozumi K, Yanagimachi R. Incorporation of the acrosome into the oocyte during intracytoplasmic sperm injection could be potentially hazardous to embryo development. Proc Natl Acad Sci U S A. 2005;102:14209–14.

    Article  PubMed  CAS  Google Scholar 

  5. Perry ACF, Verlhac M-H. Second meiotic arrest and exit in frogs and mice. EMBO Rep. 2008;9:246–51.

    Article  PubMed  CAS  Google Scholar 

  6. Yong HY, Hao Y, Lai L, Li R, Murphy CN, Rieke A, Wax D, Samuel M, Prather RS. Production of a transgenic piglet by a sperm injection technique in which no chemical or physical treatments were used for oocytes or sperm. Mol Reprod Dev. 2006;73:595–9.

    Article  PubMed  CAS  Google Scholar 

  7. Katayama M, Rieke A, Cantley T, Murphy C, Dowell L, Sutovsky P, Day BN. Improved fertilization and embryo development resulting in birth of live piglets after intracytoplasmic sperm injection and in vitro culture in a cysteine-supplemented medium. Theriogenology. 2007;67:835–47.

    Article  PubMed  CAS  Google Scholar 

  8. Fujimoto S, Yoshida N, Fukui T, Amanai M, Isobe T, Itagaki C, Izumi T, Perry ACF. Mammalian phospholipase C zeta induces oocyte activation from the sperm perinuclear matrix. Dev Biol. 2004;274:370–83.

    Article  PubMed  CAS  Google Scholar 

  9. Macháty Z, Bonk AJ, Kühholzer B, Prather RS. Porcine oocyte activation induced by a cytosolic sperm factor. Mol Reprod Dev. 2000;57:290–5.

    Article  PubMed  Google Scholar 

  10. Malcuit C, Maserati M, Takahashi Y, Page R, Fissore RA. Intracytoplasmic sperm injection in the bovine induces abnormal [Ca2+]i responses and oocyte activation. Reprod Fertil Dev. 2006;18:39–51.

    Article  PubMed  CAS  Google Scholar 

  11. Martin MJ, Pinkert CA. Production of transgenic swine by DNA microinjection. In: Pincert CA, editor. Transgenic animal technology: a laboratory handbook. 2nd ed. California: Academic; 2002. p. 307–36.

    Google Scholar 

  12. Niemann H, Döpke HH, Hadeler KG. Production of transgenic ruminants by DNA microinjection. In: Pincert CA, editor. Transgenic animal technology: a laboratory handbook. 2nd ed. California: Academic; 2002. p. 337–57.

    Google Scholar 

  13. Robl JM, Wang Z, Kasinathan P, Kuroiwa Y. Transgenic animal production and animal biotechnology. Theriogenology. 2007;67:127–33.

    Article  PubMed  CAS  Google Scholar 

  14. Yazaki S, Iwamoto M, Onishi A, Miwa Y, Suzuki S, Fuchimoto D, Sembon S, Furusawa T, Hashimoto M, Oishi T, Liu D, Nagasaka T, Kuzuya T, Maruyama S, Ogawa H, Kadomatsu K, Uchida K, Nakao A, Kobayashi T. Successful cross-breeding of cloned pigs expressing endo-galactosidase C and human decay accelerating factor. Xenotransplantation. 2009;16:511–21.

    Article  PubMed  Google Scholar 

  15. Laible G, Alonso-González L. Gene targeting from laboratory to livestock: current status and emerging concepts. Biotechnol J. 2009;4:1278–92.

    Article  PubMed  CAS  Google Scholar 

  16. Buerstedde JM, Takeda S. Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell. 1991;67:179–88.

    Article  PubMed  CAS  Google Scholar 

  17. Perry ACF, Wakayama T, Kishikawa H, Kasai T, Okabe M, Toyoda Y, Yanagimachi R. Mammalian transgenesis by intracytoplasmic sperm injection. Science. 1999;284:1180–3.

    Article  PubMed  CAS  Google Scholar 

  18. Perry ACF, Rothman A, de las Heras JI, Feinstein P, Mombaerts P, Cooke HJ, Wakayama T. Efficient metaphase II transgenesis with different transgene archetypes. Nat Biotechnol. 2001;19:1071–3.

    Article  PubMed  CAS  Google Scholar 

  19. Umeyama K, Watanabe M, Saito H, Kurome M, Tohi S, Matsunari H, Miki K, Nagashima H. Dominant-negative mutant hepatocyte nuclear factor 1alpha induces diabetes in transgenic-cloned pigs. Transgenic Res. 2009;18:697–706.

    Article  PubMed  CAS  Google Scholar 

  20. Nakai M, Kaneko H, Somfai T, Maedomari N, Ozawa M, Noguchi J, Ito J, Kashiwazaki N, Kikuchi K. Production of viable piglets for the first time using sperm derived from ectopic testicular xenografts. Reproduction. 2010;139:331–5.

    Article  PubMed  CAS  Google Scholar 

  21. Martin MJ. Development of in vivo-matured porcine oocytes following intracytoplasmic sperm injection. Biol Reprod. 2000;63:109–12.

    Article  PubMed  CAS  Google Scholar 

  22. Kolbe T, Holtz W. Birth of piglet derived from an oocyte fertilized by intracytoplasmic sperm injection (ICSI). Anim Reprod Sci. 2000;64:97–101.

    Article  PubMed  CAS  Google Scholar 

  23. Lai L, Sun Q, Wu G, Murpy CN, Kühholzer B, Park KW, Bonk AJ, Day BN, Prather RS. Development of porcine embryos and offspring after intracytoplasmic sperm injection with liposome transfected or non-transfected sperm into in vitro matured oocytes. Zygote. 2001;9:339–46.

    Article  PubMed  CAS  Google Scholar 

  24. Probst S, Rath D. Production of piglets using intracytoplasmic sperm injection (ICSI) with flowcytometrically sorted boar semen and artificially activated oocytes. Theriogenology. 2003;59:961–73.

    Article  PubMed  Google Scholar 

  25. Nakai M, Kashiwazaki N, Takizawa A, Hayashi Y, Nakatsukasa E, Fuchimoto D, Noguchi J, Kaneko H, Shino M, Kikuchi K. Viable piglets generated from porcine oocytes matured in vitro and fertilized by intracytoplasmic sperm head injection. Biol Reprod. 2003;68:1003–8.

    Article  PubMed  CAS  Google Scholar 

  26. Wei H, Fukui Y. Births of calves derived from embryos produced by intracytoplasmic sperm injection without exogenous oocyte activation. Zygote. 2002;10:149–53.

    Article  PubMed  Google Scholar 

  27. Horiuchi T, Emuta C, Yamauchi Y, Oikawa T, Numabe T, Yanagimachi R. Birth of normal calves after intracytoplasmic sperm injection of bovine oocytes: a methodological approach. Theriogenology. 2002;57:1013–24.

    Article  Google Scholar 

  28. Galli C, Vassiliev I, Lagutina I, Galli A, Lazzari G. Bovine embryo development following ICSI: effect of activation, sperm capacitation and pre-treatment with dithiothreitol. Theriogenology. 2003;60:1467–80.

    Article  PubMed  CAS  Google Scholar 

  29. Oikawa T, Takada N, Kikuchi T, Numabe T, Takenaka M, Horiuchi T. Evaluation of activation treatments for blastocyst production and birth of viable calves following bovine intracytoplasmic sperm injection. Anim Reprod Sci. 2005;86:187–94.

    Article  PubMed  CAS  Google Scholar 

  30. Horiuchi T. Application study of intracytoplasmic sperm injection for golden hamster and cattle production. J Reprod Dev. 2006;52:13–21.

    Article  PubMed  Google Scholar 

  31. Gòmez MC, Catt JW, Evans G, Maxwell WMC. Cleavage, development and competence of sheep embryos fertilized by intracytoplasmic sperm injection and in vitro fertilization. Theriogenology. 1998;49:1143–54.

    Article  PubMed  Google Scholar 

  32. Cochran R, Meintjes M, Reggio B, Hylan D, Carter J, Pinto C, Paccamonti D, Godke RA. Live foals produced from sperm-injected oocytes derived from pregnant mares. J Equine Vet Sci. 1998;11:736–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Onishi PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Onishi, A., Perry, A.C.F. (2012). Livestock Production via Micromanipulation. In: Nagy, Z., Varghese, A., Agarwal, A. (eds) Practical Manual of In Vitro Fertilization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1780-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1780-5_41

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1779-9

  • Online ISBN: 978-1-4419-1780-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics