Skip to main content

Extended Culture in IVF

  • Chapter
  • First Online:
Practical Manual of In Vitro Fertilization

Abstract

With the advent of culture media based upon the nutrient composition of the human oviduct and uterus, and specifically designed to support the human embryo in vitro, it has become feasible to culture the pronucleate oocyte to the blastocyst stage as a routine procedure in human IVF. The potential advantages of extended culture go beyond increases in implantation and pregnancy rates and include lower miscarriage rates and the ability to perform comprehensive genetic and physiological analysis of the embryo proper prior to transfer. The capacity to better select a viable embryo will continue to improve the safety of IVF to the mother and child without a compromise in efficacy. The ability of blastocysts to undergo successful cryopreservation with vitrification will culminate in the transfer of genetically analyzed embryos to a naturally cycling uterus. The transfer of vitrified blastocysts in a nonstimulated cycle may ultimately be the way all future IVF is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adashi EY, Barri PN, Berkowitz R, Braude P, Bryan E, Carr J, et al. Infertility therapy-associated multiple pregnancies (births): an ongoing epidemic. Reprod Biomed Online. 2003;7(5):515–42.

    Article  PubMed  Google Scholar 

  2. Gerris J, De Neubourg D, Mangelschots K, Van Royen E, Vercruyssen M, Barudy-Vasquez J, et al. Elective single day 3 embryo transfer halves the twinning rate without decrease in the ongoing pregnancy rate of an IVF/ICSI programme. Hum Reprod. 2002;17(10):2626–31.

    Article  PubMed  Google Scholar 

  3. Gardner DK, Surrey E, Minjarez D, Leitz A, Stevens J, Schoolcraft WB. Single blastocyst transfer: a prospective randomized trial. Fertil Steril. 2004;81(3):551–5.

    Article  PubMed  CAS  Google Scholar 

  4. Cummins JM, Breen TM, Harrison KL, Shaw JM, Wilson LM, Hennessey JF. A formula for scoring human embryo growth rates in in vitro fertilization: its value in predicting pregnancy and in comparison with visual estimates of embryo quality. J In Vitro Fert Embryo Transf. 1986;3(5):284–95.

    Article  PubMed  CAS  Google Scholar 

  5. Van Royen E, Mangelschots K, De Neubourg D, Valkenburg M, Van de Meerssche M, Ryckaert G, et al. Characterization of a top quality embryo, a step towards single-embryo transfer. Hum Reprod. 1999;14(9):2345–9.

    Article  PubMed  Google Scholar 

  6. Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. 2000;73(6):1155–8.

    Article  PubMed  CAS  Google Scholar 

  7. Gardner DK. Human embryonic development in vitro. In: Tan SLC, Chian R-C, Buckette WM, editors. In-vitro maturation of human oocytes. London: Informa Healthcare; 2007. p. 295–312.

    Google Scholar 

  8. Tesarik J. Developmental failure during the preimplanation period of human embryogenesis. In: Van Blerkom J, editor. The biological basis of early human reproductive failure. New York: Oxford University Press; 1994. p. 327–44.

    Google Scholar 

  9. Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988;332(6163):459–61.

    Article  PubMed  CAS  Google Scholar 

  10. Marston JH, Penn R, Sivelle PC. Successful autotransfer of tubal eggs in the rhesus monkey (Macaca mulatta). J Reprod Fertil. 1977;49(1):175–6.

    Article  PubMed  CAS  Google Scholar 

  11. Barnes FL. The effects of the early uterine environment on the subsequent development of embryo and fetus. Theriogenology. 2000;53(2):649–58.

    Article  PubMed  CAS  Google Scholar 

  12. Croxatto HB, Ortiz ME, Diaz S, Hess R, Balmaceda J, Croxatto HD. Studies on the duration of egg transport by the human oviduct. II. Ovum location at various intervals following luteinizing hormone peak. Am J Obstet Gynecol. 1978;132(6):629–34.

    PubMed  CAS  Google Scholar 

  13. Van der Auwera I, Pijnenborg R, Koninckx PR. The influence of in-vitro culture versus stimulated and untreated oviductal environment on mouse embryo development and implantation. Hum Reprod. 1999;14(10):2570–4.

    Article  PubMed  Google Scholar 

  14. Ertzeid G, Storeng R. The impact of ovarian stimulation on implantation and fetal development in mice. Hum Reprod. 2001;16(2):221–5.

    Article  PubMed  CAS  Google Scholar 

  15. Pellicer A, Valbuena D, Cano F, Remohi J, Simon C. Lower implantation rates in high responders: evidence for an altered endocrine milieu during the preimplantation period. Fertil Steril. 1996;65(6):1190–5.

    PubMed  CAS  Google Scholar 

  16. Lopata A. The neglected human blastocyst. J Assist Reprod Genet. 1992;9(6):508–12.

    Article  PubMed  CAS  Google Scholar 

  17. Bongso A, Fong CY, Ng SC, Ratnam S. Human embryonic behavior in a sequential human oviduct-endometrial coculture system. Fertil Steril. 1994;61(5):976–8.

    PubMed  CAS  Google Scholar 

  18. Menezo YJ, Guerin JF, Czyba JC. Improvement of human early embryo development in vitro by coculture on monolayers of Vero cells. Biol Reprod. 1990;42(2):301–6.

    Article  PubMed  CAS  Google Scholar 

  19. Gardner DK, Lane M. Embryo Culture systems. In: Gardner DK, editor. In vitro fertilization a practical approach. New York: Informa Healthcare; 2007. p. 221–82.

    Google Scholar 

  20. Quinn P, Kerin JF, Warnes GM. Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil Steril. 1985;44(4):493–8.

    PubMed  CAS  Google Scholar 

  21. Menezo YJ, Hamamah S, Hazout A, Dale B. Time to switch from co-culture to sequential defined media for transfer at the blastocyst stage. Hum Reprod. 1998;13(8):2043–4.

    Article  PubMed  CAS  Google Scholar 

  22. Gwatkin RB. Amino acid requirements for attachment and outgrowth of the mouse blastocyst in vitro. J Cell Physiol. 1966;68:335–44.

    Article  Google Scholar 

  23. Spindle AI, Pedersen RA. Hatching, attachment, and outgrowth of mouse blastocysts in vitro: fixed nitrogen requirements. J Exp Zool. 1973;186(3):305–18.

    Article  PubMed  CAS  Google Scholar 

  24. Bavister BD, Arlotto T. Influence of single amino acids on the development of hamster one-cell embryos in vitro. Mol Reprod Dev. 1990;25(1):45–51.

    Article  PubMed  CAS  Google Scholar 

  25. Gardner DK, Lane M. Amino acids and ammonium regulate mouse embryo development in culture. Biol Reprod. 1993;48(2):377–85.

    Article  PubMed  CAS  Google Scholar 

  26. Lane M, Gardner DK. Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions. J Reprod Fertil. 1994;102(2):305–12.

    Article  PubMed  CAS  Google Scholar 

  27. Virant-Klun I, Tomazevic T, Vrtacnik-Bokal E, Vogler A, Krsnik M, Meden-Vrtovec H. Increased ammonium in culture medium reduces the development of human embryos to the blastocyst stage. Fertil Steril. 2006;85(2):526–8.

    Article  PubMed  CAS  Google Scholar 

  28. McEvoy TG, Robinson JJ, Aitken RP, Findlay PA, Robertson IS. Dietary excesses of urea influence the viability and metabolism of preimplantation sheep embryos and may affect fetal growth among survivors. Anim Reprod Sci. 1997;47(1–2):71–90.

    Article  PubMed  CAS  Google Scholar 

  29. Sinclair KD, McEvoy TG, Maxfield EK, Maltin CA, Young LE, Wilmut I, et al. Aberrant fetal growth and development after in vitro culture of sheep zygotes. J Reprod Fertil. 1999;116(1):177–86.

    Article  PubMed  CAS  Google Scholar 

  30. Gardner DK, Lane M, Stevens J, Schoolcraft WB. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil Steril. 2001;76(6):1175–80.

    Article  PubMed  CAS  Google Scholar 

  31. Gardner DK, Lane M, Calderon I, Leeton J. Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil Steril. 1996;65(2):349–53.

    PubMed  CAS  Google Scholar 

  32. Harris SE, Gopichandran N, Picton HM, Leese HJ, Orsi NM. Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology. 2005;64(4):992–1006.

    Article  PubMed  CAS  Google Scholar 

  33. Hugentobler SA, Diskin MG, Leese HJ, Humpherson PG, Watson T, Sreenan JM, et al. Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine. Mol Reprod Dev. 2007;74(4):445–54.

    Article  PubMed  CAS  Google Scholar 

  34. Gardner DK, Sakkas D. Mouse embryo cleavage, metabolism and viability: role of medium composition. Hum Reprod. 1993;8(2):288–95.

    PubMed  CAS  Google Scholar 

  35. Lane M, Gardner DK. Lactate regulates pyruvate uptake and metabolism in the preimplantation mouse embryo. Biol Reprod. 2000;62(1):16–22.

    Article  PubMed  CAS  Google Scholar 

  36. Gardner DK, Lane M. Culture and selection of viable blastocysts: a feasible proposition for human IVF? Hum Reprod Update. 1997;3(4):367–82.

    Article  PubMed  CAS  Google Scholar 

  37. Gardner DK. Changes in requirements and utilization of nutrients during mammalian preimplantation embryo development and their significance in embryo culture. Theriogenology. 1998;49(1):83–102.

    Article  PubMed  CAS  Google Scholar 

  38. Biggers JD, McGinnis LK, Lawitts JA. One-step versus two-step culture of mouse preimplantation embryos: is there a difference? Hum Reprod. 2005;20(12):3376–84.

    Article  PubMed  CAS  Google Scholar 

  39. Reed LC, Lane M, Gardner DK. In vivo rates of mouse embryo development can be attained in vitro. Theriogenology. 2003;59:349.

    Google Scholar 

  40. Whitten WK. Culture of tubal ova. Nature. 1957;179(4569):1081–2.

    Article  PubMed  CAS  Google Scholar 

  41. Behr B, Pool TB, Milki AA, Moore D, Gebhardt J, Dasig D. Preliminary clinical experience with human blastocyst development in vitro without co-culture. Hum Reprod. 1999;14(2):454–7.

    Article  PubMed  CAS  Google Scholar 

  42. Lawitts JA, Biggers JD. Optimization of mouse embryo culture media using simplex methods. J Reprod Fertil. 1991;91(2):543–56.

    Article  PubMed  CAS  Google Scholar 

  43. Ho Y, Wigglesworth K, Eppig JJ, Schultz RM. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol Reprod Dev. 1995;41(2):232–8.

    Article  PubMed  CAS  Google Scholar 

  44. Barnes FL, Crombie A, Gardner DK, Kausche A, Lacham-Kaplan O, Suikkari AM, et al. Blastocyst development and birth after in-vitro maturation of human primary oocytes, intracytoplasmic sperm injection and assisted hatching. Hum Reprod. 1995;10(12):3243–7.

    PubMed  CAS  Google Scholar 

  45. Gardner D, Lane M. Towards a single embryo transfer. Reprod Biomed Online. 2003;6(4):470–81.

    Article  PubMed  Google Scholar 

  46. Blake DA, Farquhar CM, Johnson N, Proctor M. Cleavage stage versus blastocyst stage embryo transfer in assisted conception. Cochrane Database Syst Rev. 2007;(4):CD002118.

    Google Scholar 

  47. Gardner DK, Reed L, Linck D, Sheehan C, Lane M. Quality control in human in vitro fertilization. Semin Reprod Med. 2005;23(4):319–24.

    Article  PubMed  Google Scholar 

  48. Mortimer DM, Mortimer ST. Quality and risk management in the IVF laboratory. Cambridge: Cambridge University Press; 2005.

    Google Scholar 

  49. Mastroianni Jr L, Jones R. Oxygen tension within the rabbit fallopian tube. J Reprod Fertil. 1965;147:99–102.

    Google Scholar 

  50. Ross RN, Graves CN. O2 levels in female rabbit reproductive tract. J Anim Sci. 1974;39:994.

    Google Scholar 

  51. Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993;99(2):673–9.

    Article  PubMed  CAS  Google Scholar 

  52. Quinn P, Harlow GM. The effect of oxygen on the development of preimplantation mouse embryos in vitro. J Exp Zool. 1978;206(1):73–80.

    Article  PubMed  CAS  Google Scholar 

  53. Thompson JG, Simpson AC, Pugh PA, Donnelly PE, Tervit HR. Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J Reprod Fertil. 1990;89(2):573–8.

    Article  PubMed  CAS  Google Scholar 

  54. Batt PA, Gardner DK, Cameron AW. Oxygen concentration and protein source affect the development of preimplantation goat embryos in vitro. Reprod Fertil Dev. 1991;3(5):601–7.

    Article  PubMed  CAS  Google Scholar 

  55. Gardner DK, Lane M. Ex vivo early embryo development and effects on gene expression and imprinting. Reprod Fertil Dev. 2005;17(3):361.

    Article  PubMed  Google Scholar 

  56. Katz-Jaffe MG, Linck DW, Schoolcraft WB, Gardner DK. A proteomic analysis of mammalian preimplantation embryonic development. Reproduction. 2005;130(6):899–905.

    Article  PubMed  CAS  Google Scholar 

  57. Meintjes M, Chantilis SJ, Douglas JD, Rodriguez AJ, Guerami AR, Bookout DM, et al. A controlled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program. Hum Reprod. 2009;24(2):300–7.

    Article  PubMed  Google Scholar 

  58. Nanassy L, Peterson CA, Wilcox AL, Peterson CM, Hammoud A, Carrell DT. Comparison of 5% and ambient oxygen during days 3-5 of in vitro culture of human embryos. Fertil Steril. 2010;93(2):579–85.

    Article  PubMed  Google Scholar 

  59. Wale PL, Gardner DK. Time-lapse analysis of mouse embryo development in oxygen gradients. Reprod Biomed Online. 2010;21(3):402–10.

    Article  PubMed  CAS  Google Scholar 

  60. Balaban B, Urman B, Alatas C, Mercan R, Aksoy S, Isiklar A. Blastocyst-stage transfer of poor-quality cleavage-stage embryos results in higher implantation rates. Fertil Steril. 2001;75(3):514–8.

    Article  PubMed  CAS  Google Scholar 

  61. Langley MT, Marek DM, Gardner DK, Doody KM, Doody KJ. Extended embryo culture in human assisted reproduction treatments. Hum Reprod. 2001;16(5):902–8.

    Article  PubMed  CAS  Google Scholar 

  62. Cruz JR, Dubey AK, Patel J, Peak D, Hartog B, Gindoff PR. Is blastocyst transfer useful as an alternative treatment for patients with multiple in vitro fertilization failures? Fertil Steril. 1999;72(2):218–20.

    Article  PubMed  CAS  Google Scholar 

  63. Levitas E, Lunenfeld E, Har-Vardi I, Albotiano S, Sonin Y, Hackmon-Ram R, et al. Blastocyst-stage embryo transfer in patients who failed to conceive in three or more day 2-3 embryo transfer cycles: a prospective, randomized study. Fertil Steril. 2004;81(3):567–71.

    Article  PubMed  Google Scholar 

  64. Guerif F, Bidault R, Gasnier O, Couet ML, Gervereau O, Lansac J, et al. Efficacy of blastocyst transfer after implantation failure. Reprod Biomed Online. 2004;9(6):630–6.

    Article  PubMed  CAS  Google Scholar 

  65. Wilson M, Hartke K, Kiehl M, Rodgers J, Brabec C, Lyles R. Integration of blastocyst transfer for all patients. Fertil Steril. 2002;77(4):693–6.

    Article  PubMed  Google Scholar 

  66. Schoolcraft WB, Gardner DK. Blastocyst culture and transfer increases the efficiency of oocyte donation. Fertil Steril. 2000;74(3):482–6.

    Article  PubMed  CAS  Google Scholar 

  67. Alikani M, Calderon G, Tomkin G, Garrisi J, Kokot M, Cohen J. Cleavage anomalies in early human embryos and survival after prolonged culture in-vitro. Hum Reprod. 2000;15(12):2634–43.

    Article  PubMed  CAS  Google Scholar 

  68. Coskun S, Hollanders J, Al-Hassan S, Al-Sufyan H, Al-Mayman H, Jaroudi K. Day 5 versus day 3 embryo transfer: a controlled randomized trial. Hum Reprod. 2000;15(9):1947–52.

    Article  PubMed  CAS  Google Scholar 

  69. Rienzi L, Ubaldi F, Iacobelli M, Ferrero S, Minasi MG, Martinez F, et al. Day 3 embryo transfer with combined evaluation at the pronuclear and cleavage stages compares favourably with day 5 blastocyst transfer. Hum Reprod. 2002;17(7):1852–5.

    Article  PubMed  Google Scholar 

  70. Scholtes MC, Zeilmaker GH. Blastocyst transfer in day-5 embryo transfer depends primarily on the number of oocytes retrieved and not on age. Fertil Steril. 1998;69(1):78–83.

    Article  PubMed  CAS  Google Scholar 

  71. Pantos K, Athanasiou V, Stefanidis K, Stavrou D, Vaxevanoglou T, Chronopoulou M. Influence of advanced age on the blastocyst development rate and pregnancy rate in assisted reproductive technology. Fertil Steril. 1999;71(6):1144–6.

    Article  PubMed  CAS  Google Scholar 

  72. Janny L, Menezo YJ. Evidence for a strong paternal effect on human preimplantation embryo development and blastocyst formation. Mol Reprod Dev. 1994;38(1):36–42.

    Article  PubMed  CAS  Google Scholar 

  73. Balaban B, Urman B, Isiklar A, Alatas C, Mercan R, Aksoy S, et al. Blastocyst transfer following intracytoplasmic injection of ejaculated, epididymal or testicular spermatozoa. Hum Reprod. 2001;16(1):125–9.

    Article  PubMed  CAS  Google Scholar 

  74. Gardner DK, Balaban B. Choosing between day 3 and day 5 embryo transfers. Clin Obstet Gynecol. 2006;49(1):85–92.

    Article  PubMed  Google Scholar 

  75. Gardner DK, Schoolcraft WB, Wagley L, Schlenker T, Stevens J, Hesla J. A prospective randomized trial of blastocyst culture and transfer in in-vitro fertilization. Hum Reprod. 1998;13(12):3434–40.

    Article  PubMed  CAS  Google Scholar 

  76. Utsunomiya T, Naitou T, Nagaki M. A prospective trial of blastocyst culture and transfer. Hum Reprod. 2002;17(7):1846–51.

    Article  PubMed  Google Scholar 

  77. Karaki RZ, Samarraie SS, Younis NA, Lahloub TM, Ibrahim MH. Blastocyst culture and transfer: a step toward improved in vitro fertilization outcome. Fertil Steril. 2002;77(1):114–8.

    Article  PubMed  Google Scholar 

  78. Van der Auwera I, Debrock S, Spiessens C, Afschrift H, Bakelants E, Meuleman C, et al. A prospective randomized study: day 2 versus day 5 embryo transfer. Hum Reprod. 2002;17(6):1507–12.

    Article  PubMed  Google Scholar 

  79. Levron J, Shulman A, Bider D, Seidman D, Levin T, Dor J. A prospective randomized study comparing day 3 with blastocyst-stage embryo transfer. Fertil Steril. 2002;77(6):1300–1.

    Article  PubMed  Google Scholar 

  80. Frattarelli JL, Leondires MP, McKeeby JL, Miller BT, Segars JH. Blastocyst transfer decreases multiple pregnancy rates in in vitro fertilization cycles: a randomized controlled trial. Fertil Steril. 2003;79(1):228–30.

    Article  PubMed  Google Scholar 

  81. Margreiter M, Weghofer A, Kogosowski A, Mahmoud KZ, Feichtinger W. A prospective randomized multicenter study to evaluate the best day for embryo transfer: does the outcome justify prolonged embryo culture? J Assist Reprod Genet. 2003;20(2):91–4.

    Article  PubMed  Google Scholar 

  82. Bungum M, Bungum L, Humaidan P, Andersen CY. Day 3 versus day 5 embryo transfer: a prospective randomized study. Reprod Biomed Online. 2003;7:98–104.

    Article  PubMed  CAS  Google Scholar 

  83. Emiliani S, Delbaere A, Vannin AS, Biramane J, Verdoodt M, Englert Y, et al. Similar delivery rates in a selected group of patients, for day 2 and day 5 embryos both cultured in sequential medium: a randomized study. Hum Reprod. 2003;18(10):2145–50.

    Article  PubMed  Google Scholar 

  84. Pantos K, Makrakis E, Stavrou D, Karantzis P, Vaxevanoglou T, Tzigounis V. Comparison of embryo transfer on day 2, day 3, and day 6: a prospective randomized study. Fertil Steril. 2004;81(2):454–5.

    Article  PubMed  Google Scholar 

  85. Kolibianakis EM, Zikopoulos K, Verpoest W, Camus M, Joris H, Van Steirteghem AC, et al. Should we advise patients undergoing IVF to start a cycle leading to a day 3 or a day 5 transfer? Hum Reprod. 2004;19(11):2550–4.

    Article  PubMed  CAS  Google Scholar 

  86. Hreinsson J, Rosenlund B, Fridstrom M, Ek I, Levkov L, Sjoblom P, et al. Embryo transfer is equally effective at cleavage stage and blastocyst stage: a randomized prospective study. Eur J Obstet Gynecol Reprod Biol. 2004;117(2):194–200.

    Article  PubMed  Google Scholar 

  87. Papanikolaou EG, D’Haeseleer E, Verheyen G, Van de Velde H, Camus M, Steirteghem AV, et al. Live birth rate is significantly higher after blastocyst transfer than after cleavage-stage embryo transfer when at least four embryos are available on day 3 of embryo culture. A randomized prospective study. Hum Reprod. 2005;29:1–6.

    Google Scholar 

  88. Papanikolaou V. Early pregnancy loss is significantly higher after day 3 single embryo transfer that after day 5 single blastocyst transfer in GnRH antagonist stimulated IVF cycles. Reprod Biomed Online. 2006;12(1):60–5.

    Article  PubMed  CAS  Google Scholar 

  89. Papanikolaou EG, Camus M, Kolibianakis EM, Van Landuyt L, Van Steirteghem A, Devroey P. In vitro fertilization with single blastocyst-stage versus single cleavage-stage embryos. N Engl J Med. 2006;354:1139–46.

    Article  PubMed  CAS  Google Scholar 

  90. Gardner DK, Schoolcraft WB. In vitro culture of human blastocyst. In: Jansen R, Mortimer D, editors. Towards reproductive certainty: fertility and genetics beyond. Carnforth: Parthenon; 1999. p. 378–88.

    Google Scholar 

  91. Balaban B, Yakin K, Urman B. Randomized comparison of two different blastocyst grading systems. Fertil Steril. 2006;85(3):559–63.

    Article  PubMed  Google Scholar 

  92. Katz-Jaffe MG, Gardner DK, Schoolcraft WB. Proteomic analysis of individual human embryos to identify novel biomarkers of development and viability. Fertil Steril. 2006;85(1):101–7.

    Article  PubMed  CAS  Google Scholar 

  93. Schoolcraft WB, Fragouli E, Stevens J, Munne S, Katz-Jaffe MG, Wells D. Clinical application of comprehensive chromosomal screening at the blastocyst stage. Fertil Steril. 2010;94(5):1700–6.

    Article  PubMed  Google Scholar 

  94. Lane M, Schoolcraft WB, Gardner DK. Vitrification of mouse and human blastocysts using a novel cryoloop container-less technique. Fertil Steril. 1999;72(6):1073–8.

    Article  PubMed  CAS  Google Scholar 

  95. Takahashi K, Mukaida T, Goto T, Oka C. Perinatal outcome of blastocyst transfer with vitrification using cryoloop: a 4-year follow-up study. Fertil Steril. 2005;84(1):88–92.

    Article  PubMed  Google Scholar 

  96. Crosby IM, Gandolfi F, Moor RM. Control of protein synthesis during early cleavage of sheep embryos. J Reprod Fertil. 1988;82(2):769–75.

    Article  PubMed  CAS  Google Scholar 

  97. Rieger D, Loskutoff NM, Betteridge KJ. Developmentally related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro. Reprod Fertil Dev. 1992;4(5):547–57.

    Article  PubMed  CAS  Google Scholar 

  98. Lane M, Gardner DK. Mitochondrial malate-aspartate shuttle regulates mouse embryo nutrient consumption. J Biol Chem. 2005;280(18):18361–7.

    Article  PubMed  CAS  Google Scholar 

  99. Van Winkle LJ, Haghighat N, Campione AL. Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J Exp Zool. 1990;253(2):215–9.

    Article  PubMed  Google Scholar 

  100. Edwards LJ, Williams DA, Gardner DK. Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH. Hum Reprod. 1998;13(12):3441–8.

    Article  PubMed  CAS  Google Scholar 

  101. Liu Z, Foote RH. Development of bovine embryos in KSOM with added superoxide dismutase and taurine and with five and twenty percent O2. Biol Reprod. 1995;53(4):786–90.

    Article  PubMed  CAS  Google Scholar 

  102. Lindenbaum A. A survey of naturally occurring chelating ligands. Adv Exp Med Biol. 1973;40:67–77.

    PubMed  CAS  Google Scholar 

  103. Wu G, Morris Jr SM. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336(Pt 1):1–17.

    PubMed  CAS  Google Scholar 

  104. Martin PM, Sutherland AE, Van Winkle LJ. Amino acid transport regulates blastocyst implantation. Biol Reprod. 2003;69(4):1101–8.

    Article  PubMed  CAS  Google Scholar 

  105. Lane M, Gardner DK. Differential regulation of mouse embryo development and viability by amino acids. J Reprod Fertil. 1997;109(1):153–64.

    Article  PubMed  CAS  Google Scholar 

  106. Martin PM, Sutherland AE. Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev Biol. 2001;240(1):182–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Gardner PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gardner, D.K., Lane, M. (2012). Extended Culture in IVF. In: Nagy, Z., Varghese, A., Agarwal, A. (eds) Practical Manual of In Vitro Fertilization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1780-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1780-5_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1779-9

  • Online ISBN: 978-1-4419-1780-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics