Skip to main content

Short Culture: Day 1/Day 2/Day 3 Embryo Culture

  • Chapter
  • First Online:
Practical Manual of In Vitro Fertilization

Abstract

I often feel that we have come a long way since the beginnings of clinical human IVF in the early 1980s, but I know that there are many continuing, exciting discoveries yet to be made. In this chapter, after a historical introduction, aspects of in vitro culture during the first 3 days of development will be discussed in the context of the known metabolism and physiology of the embryo. The object will be to meld culture media and the way they are used with the production of early embryos that have the best potential for continued development into a live, healthy baby. I trust that this format and the information herein will therefore contribute to a basis for the continued work on this essential aspect of human IVF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet. 1978;2:366.

    Article  PubMed  CAS  Google Scholar 

  2. Goto Y, Noda Y, Shiotani M, Kishi J, Nonogaki T, Mori T. The fate of embryos transferred into the uterus. J Assist Reprod Genet. 1993;10:197–201.

    Article  PubMed  CAS  Google Scholar 

  3. Wu JT. Development of two-cell eggs transferred into the uteri of ovariectomized rats. Biol Reprod. 1975;13:211–7.

    Article  PubMed  CAS  Google Scholar 

  4. Marston JH, Penn R, Sivelle PC. Successful autotransfer of tubal eggs in the rhesus monkey (Macaca mulatta). J Reprod Fertil. 1977;49:175–6.

    Article  PubMed  CAS  Google Scholar 

  5. Asch RH, Ellsworth LR, Balmaceda JP, Wong PC. Pregnancy following translaparoscopic gamete intrafallopian transfer (GIFT). Lancet. 1984;ii:1034.

    Article  Google Scholar 

  6. Devroey P, Braeckmans P, Smitz J, et al. Pregnancy after translaparoscopic zygote intrafallopian transfer in a patient with sperm antibodies. Lancet. 1986;1:1329.

    Article  PubMed  CAS  Google Scholar 

  7. Balmaceda JP, Gastaldi C, Remohi J, et al. Tubal embryo transfer as a treatment for infertility due to male factor. Fertil Steril. 1988;50:476–9.

    PubMed  CAS  Google Scholar 

  8. Quinn P. The development and impact of assisted reproductive technologies culture media. Fertil Steril. 2004;8:27–9.

    Article  Google Scholar 

  9. Craft I, McLeod F, Green S, et al. Human pregnancy following oocyte and sperm transfer to the uterus. Lancet. 1982;319:1031–3.

    Article  Google Scholar 

  10. Quinn P, Steinberg J, Schein S, Greenberg P. Direct ovum-sperm transfer (DOST) to the uterus as a mode of treatment following failed IUI but preceding IVF or GIFT. Proc 44th Annual Meeting of the Pacific Coast Fertility Society, Rancho Mirage, California; 1996. P-32:A26.

    Google Scholar 

  11. Trounson AO, Mohr LR, Wood C, Leeton JF. Effect of delayed insemination on IVF culture and transfer of human embryos. J Reprod Fertil. 1982;64:285–94.

    Article  PubMed  CAS  Google Scholar 

  12. Tremellen KP, Valbuena D, Landeras J, et al. The effects of intercourse on pregnancy rates during assisted human reproduction. Hum Reprod. 2000;15:2653–8.

    Article  PubMed  CAS  Google Scholar 

  13. Cooke S, Quinn P, Kime L, Ayres C, Tyler JPP, Driscoll GL. Improvement in early human embryo development using new formulation sequential stage specific culture media. Fertil Steril. 2002;78:1254–60.

    Article  PubMed  Google Scholar 

  14. Dawson KJ, Conaghan J, Ostera GR, Winston RM, Hardy K. Delaying transfer to the third day post insemination, to select non-arrested embryos, increases development to the fetal heart stage. Hum Reprod. 1995;10:177–82.

    Article  PubMed  CAS  Google Scholar 

  15. Carillo AJ, Lane B, Pridham DD, et al. Improved clinical outcomes for in vitro fertilization with delay of embryo transfer from 48 to 72 hours after oocyte retrieval: use of glucose- and phosphate-free medium. Fertil Steril. 1998;69:329–34.

    Article  Google Scholar 

  16. Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988;332:459–61.

    Article  PubMed  CAS  Google Scholar 

  17. Huisman GJ, Fauser BCJM, Eijkemans MJC, Pieters MHEC. Implantation rates after in vitro fertilization and transfer of a maximum of two embryos that have undergone three to five days of culture. Fertil Steril. 2000;73:117–22.

    Article  PubMed  CAS  Google Scholar 

  18. Laverge H, De Sutter P, Van der Elst J, Dhont M. A prospective, randomized study comparing day 2 and day 3 embryo transfer in human IVF. Hum Reprod. 2001;16:476–80.

    Article  PubMed  CAS  Google Scholar 

  19. Etzeid G, Dale PO, Tanbo T, Storeng R, Kjekshus E, Abyholm T. Clinical outcome of day 2 versus day 3 embryo transfer using serum-free culture medium: a prospective randomized study. J Assist Reprod Genet. 1999;16:529–34.

    Article  Google Scholar 

  20. Gardner DK, Schoolcraft WB, Wagley L, Schlenker T, Stevens J, Hesla J. A prospective randomized trial of blastocyst culture and transfer in in-vitro fertilization. Hum Reprod. 1998;13:3434–40.

    Article  PubMed  CAS  Google Scholar 

  21. Coskun S, Hollanders J, Al-Hassan S, Al-Sufyan H, Al-Mayman H, Jaroudi K. Day 5 versus day 3 embryo transfer: a controlled randomized trial. Hum Reprod. 2000;15:1947–52.

    Article  PubMed  CAS  Google Scholar 

  22. Levron J, Shulman A, Bider D, Seidman D, Levin T, Dor J. A prospective randomized study comparing day 3 with blastocyst stage embryo transfer. Fertil Steril. 2002;77:1300–1.

    Article  PubMed  Google Scholar 

  23. Ahuja KK, Smith W, Tucker M, Craft I. Successful pregnancies from the transfer of pronuclear embryos in an outpatient in vitro fertilization program. Fertil Steril. 1985;44:181–4.

    PubMed  CAS  Google Scholar 

  24. Quinn P, Stone BA, Marrs RP. Suboptimal laboratory conditions can affect pregnancy outcome after embryo transfer on day 1 or day 2 after insemination in vitro. Fertil Steril. 1990;53:168–70.

    PubMed  CAS  Google Scholar 

  25. Shen S, Rosen MP, Dobson AT, Fujimoto VY, McCulloch CE, Cedars MI. Day 2 transfer improves pregnancy outcome in in vitro fertilization cycles with few available embryos. Fertil Steril. 2006;86:44–50.

    Article  PubMed  Google Scholar 

  26. Bahceci M, Ulug U, Ciray N, Akman MA, Erden HF. Efficiency of changing the embryo transfer time from day 3 to day 2 among women with poor ovarian response: a prospective randomized trial. Fertil Steril. 2006;86:81–5.

    Article  PubMed  Google Scholar 

  27. Gardner DK, Lane M, Calderon I, Leeton J. Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil Steril. 1996;65:349–53.

    PubMed  CAS  Google Scholar 

  28. Biggers JD, Summers MC. Choosing a culture medium: making informed choices. Fertil Steril. 2008;90:473–83.

    Article  PubMed  Google Scholar 

  29. Quinn P. Media used in the assisted reproductive technologies laboratories. In: Patrizio P, Tucker MJ, Guelman V, editors. A color atlas for human assisted reproduction: laboratory and clinical insights. Philadelphia: Lippincott Williams & Wilkins; 2003. p. 241–56.

    Google Scholar 

  30. Lane M, Gardner DK. Blastomere homeostasis. In: Gardner DK, Lane M, editors. ART and the human blastocyst. New York, NY: Springer; 2001. p. 69–90.

    Chapter  Google Scholar 

  31. Tay JI, Rutherford AJ, Killick SR, Maguiness SD, Pertridge RJ, Leese HJ. Human tubal fluid: production, nutrient composition and response to adrenergic agents. Hum Reprod. 1997;12:2451–6.

    Article  PubMed  CAS  Google Scholar 

  32. Steptoe PC, Edwards RG, Purdy JM. Human blastocysts grown in culture. Nature. 1971;229:132–3.

    Article  PubMed  CAS  Google Scholar 

  33. Quinn P, Kerin JF, Warnes GM. Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil Steril. 1985;44:493–8.

    PubMed  CAS  Google Scholar 

  34. Gardner DK, Lane M. Culture and selection of viable blastocysts: a feasible proposition for human IVF? Hum Reprod Update. 1997;3:367–82.

    Article  PubMed  CAS  Google Scholar 

  35. Houghton FD, Hawkhead JA, Humpherson PG, et al. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum Reprod. 2002;17:999–1005.

    Article  PubMed  CAS  Google Scholar 

  36. Cassuto G, Chavier M, Menezo Y. Culture conditions and not prolonged culture time are responsible for monozygotic twinning in human in vitro fertilization. Fertil Steril. 2003;80:462–3.

    Article  PubMed  Google Scholar 

  37. Lane M, Gardner DK. Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol Reprod. 2003;69:1109–17.

    Article  PubMed  CAS  Google Scholar 

  38. Whitten WK. Culture of tubal mouse ova. Nature. 1956;177:96.

    Article  PubMed  CAS  Google Scholar 

  39. Brinster RL. A method for in vitro cultivation of mouse ova from two-cell to blastocyst. Exp Cell Res. 1963;32:205–8.

    Article  PubMed  CAS  Google Scholar 

  40. Quinn P, Moinipanah R, Steinberg JM, Weathersbee P. Successful human in vitro fertilization using a modified human tubal fluid medium lacking glucose and phosphate ions. Fertil Steril. 1995;63:922–4.

    PubMed  CAS  Google Scholar 

  41. Pool TB, Atiee SH, Martin JE. Oocyte and embryo culture: basic concepts and recent advances. In: May JV, ed. Assisted reproduction: laboratory considerations. Infertility and Reproductive Medicine Clinics of North America. 1998;9:181–203.

    Google Scholar 

  42. Lane M, Bavister BD. Calcium homeostasis in early hamster preimplantation embryos. Biol Reprod. 1998;59:1000–7.

    Article  PubMed  CAS  Google Scholar 

  43. Ferring Pharmaceuticals. Council for the advancement of ovulation induction and assisted reproductive technology, Marrs RP, Steinkampf MP (chairpersons). The Assisted Reproductive Global Monitor, May Council Meeting, Special Meeting Reporter, Session 1. 1999.

    Google Scholar 

  44. Phillips KP, Leveille M-C, Claman P, Baltz JM. Intracellular pH regulation in human preimplantation embryos. Hum Reprod. 2000;15:896–904.

    Article  PubMed  CAS  Google Scholar 

  45. Pool TB. Optimizing pH in clinical embryology. J Clin Embryol. 2004;7:1–17.

    Google Scholar 

  46. Higdon HL, Blackhurst DW, Boone WR. Incubator management in an assisted reproductive technology laboratory. Fertil Steril. 2008;89:703–10.

    Article  PubMed  Google Scholar 

  47. Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod. 2008;14:667–72.

    Article  PubMed  CAS  Google Scholar 

  48. Miller K. Single blastocyst transfer: the results are in the details. http://www.coopersurgical.com. Accessed September 09, 2010.

  49. Saline (medicine). http://en.wikipedia.org/wiki/Saline_(medicine). Accessed September 07, 2010.

  50. Quinn P, Warnes GM, Kerin JF, Kirby C. Culture factors in relation to the success of human in vitro fertilization and embryo transfer. Fertil Steril. 1984;41:202–9.

    PubMed  CAS  Google Scholar 

  51. Dawson KM, Baltz JM. Organic osmolytes and embryos: substrates of the Gly and β transport systems protect mouse zygotes against the effects of raised osmolarity. Biol Reprod. 1997;56:1550–8.

    Article  PubMed  CAS  Google Scholar 

  52. Reed ML, Hamic A, Thompson DJ, Caperton CL. Continuous uninterrupted single medium culture without medium renewal versus sequential media culture: a sibling embryo study. Fertil Steril. 2009;92:1783–6.

    Article  PubMed  Google Scholar 

  53. Quinn P, Pool T. Development of modern culture media. In: Fleming S, Cooke S, editors. Textbook of assisted reproduction for scientists in reproductive technology. Fremantle: Vivid; 2008. p. 65–97.

    Google Scholar 

  54. Wales RG, Whittingham DG. Decomposition of sodium pyruvate in culture medium stored at 5°C and its effects on the development of the preimplantation mouse embryo. J Reprod Fertil. 1971;24:126.

    Article  CAS  Google Scholar 

  55. Tergazyme. http://www.alconox.com/downloads/pdf/techbull_tergazyme.pdf. Accessed September 12, 2010.

  56. http://www.coleparmer.com/catalog/product_view.asp?sku=3565506. Accessed September 12, 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Quinn PhD, HCLD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Quinn, P. (2012). Short Culture: Day 1/Day 2/Day 3 Embryo Culture. In: Nagy, Z., Varghese, A., Agarwal, A. (eds) Practical Manual of In Vitro Fertilization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1780-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1780-5_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1779-9

  • Online ISBN: 978-1-4419-1780-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics