Skip to main content

Cumulus Cell Gene Expression in Assessment of Oocyte Quality

  • Chapter
  • First Online:
Practical Manual of In Vitro Fertilization
  • 3851 Accesses

Abstract

Cumulus cells originate from granulosa cells and surround oocytes from the time of ­follicular antrum formation until after fertilization. The cumulus cells have essential functions in the ovary, mediating transmission of endocrine signals and supporting oocyte growth and maturation. The relationship between oocytes and their associated cumulus cells is extremely intimate. Cytoplasmic projections extend from the innermost layer of cumulus cells, penetrating the zona pellucida and forming gap junctions at the oocyte surface. This allows for direct exchange of macromolecules, a bidirectional communication essential for the production of competent oocytes. The fact that cumulus cells are so closely associated with the oocyte, and share the same microenvironment within the ovary, has led to suggestions that information concerning oocyte quality might be obtained by analyzing them. Several studies focused on cumulus cell gene expression have now been published, indicating that a noninvasive assessment of oocyte potential, based upon analysis of the surrounding cumulus cells, may indeed be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albertini DF, Combelles CM, Benecchi E, Carabatsos MJ. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001;121:647–53.

    Article  PubMed  CAS  Google Scholar 

  2. Chian RC, Lim JH, Tan SL. State of the art in vitro oocyte maturation. Curr Opin Obstet Gynecol. 2004;16:211–9.

    Article  PubMed  Google Scholar 

  3. Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14:159–77.

    Article  PubMed  CAS  Google Scholar 

  4. Scherzer J, Ghuman SPS, Pope M, Routly JE, Walter I, Smith RF, Dobson H. Follicle and oocyte morphology in ewes after treatment with insulin in the late follicular phase. Theriogenology. 2009;71: 817–28.

    Article  PubMed  CAS  Google Scholar 

  5. Lin YH, Hwang JL, Seow KM, Huang LW, Chen HJ, Tzeng CR. Effects of growth factors and granulosa cell co-culture on in-vitro maturation of oocytes. Reprod Biomed Online. 2009;19:165–70.

    Article  PubMed  CAS  Google Scholar 

  6. Diaz FJ, O’Brien MJ, Wigglesworth K, Eppig JJ. The pre-granulosa cell to cumulus cell transition in the mouse ovary: development of competence to undergo expansion. Dev Biol. 2006;299:91–104.

    Article  PubMed  CAS  Google Scholar 

  7. Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol. 1999;13:1035–48.

    Article  PubMed  CAS  Google Scholar 

  8. Chang H, Brown CW, Matzuk MM. Genetic analyses of the mammalian transforming growth factor beta superfamily. Endocr Rev. 2002;23:787–823.

    Article  PubMed  CAS  Google Scholar 

  9. Vanderhyden BC, Macdonald EA, Nagyova E, Dhawan A. Evaluation of members of the TGFβ superfamily for the oocyte factors that control mouse cumulus expansion and steroidogenesis. Reprod Suppl. 2003;61:55–70.

    PubMed  CAS  Google Scholar 

  10. Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010;139(4):685–95.

    Article  PubMed  CAS  Google Scholar 

  11. Johnson MH. Ovarian function in the adult. In: Johnson MH, Everitt BJ, editors. Essential reproduction. 6th ed. Oxford: Blackwell; 2007. p. 82–91.

    Google Scholar 

  12. Vanderhyden BC, Armstrong DT. Role of cumulus cells and serum on the in vitro maturation, fertilisation and subsequent development of rat oocytes. Biol Reprod. 1989;40:720–8.

    Article  PubMed  CAS  Google Scholar 

  13. Ebner T, Moser M, Sommergruber M, Shebl O, Tews G. Incomplete denudation of oocytes prior to ICSI enhances embryo quality and blastocyst development. Hum Reprod. 2006;21:2972–7.

    Article  PubMed  CAS  Google Scholar 

  14. Matos L, Stevenson D, Gomes F, Silver-Carvalho JL, Almeida H. Superoxide dismutase expression in human cumulus oophorus cells. Mol Hum Reprod. 2009;15:411–9.

    Article  PubMed  CAS  Google Scholar 

  15. Ito M, Muraki M, Takahashi Y, Imai M, Tsukui T, Yamakawa N, Nakagawa K, Ohgi S, Horikawa T, Iwasaki W, et al. Glutathione S-transferase theta 1 expressed in granulosa cells as a biomarker for oocyte quality in age-related infertility. Fertil Steril. 2008;90:1026–35.

    Article  PubMed  CAS  Google Scholar 

  16. Yang YJ, Zhang YJ, Yuan L. Ultrastructure of human oocytes of different maturity stages and the alteration during in vitro maturation. Fertil Steril. 2009;92:396.e1–6.

    Article  Google Scholar 

  17. Host E, Gabrielsen A, Lindenberg S, Smidt-Jensen S. Apoptosis in human cumulus cells in relation to zona pellucida thickness variation, maturation stage and cleavage of the corresponding oocyte after intracytoplasmic sperm injection. Fertil Steril. 2002;77:511–5.

    Article  PubMed  Google Scholar 

  18. Corn CM, Hauser-Kronberger C, Moser M, Tews G, Ebner T. Predictive value of cumulus cells apoptosis with regard to blastocyst development of corresponding gametes. Fertil Steril. 2005;84: 627–33.

    Article  PubMed  Google Scholar 

  19. Nakahara K, Saito H, Saito T, Ito M, Ohta N, Takahashi T, Hiroi M. The incidence of apoptotic bodies in membrana granulosa can predict prognosis of ova from patients participating in in-vitro fertilization programs. Fertil Steril. 1997;68:312–7.

    Article  PubMed  CAS  Google Scholar 

  20. Oosterhuis GJE, Michgelsen HW, Lambalk CB, Schoemaker J, Vermes I. Apoptotic cell death in human granulosa-lutein cells: a possible indicator of in vitro fertilization outcome. Fertil Steril. 1998;70:747–9.

    Article  PubMed  CAS  Google Scholar 

  21. Patrizio P, Fragouli E, Bianchi V, Borini A, Wells D. Molecular methods for selection of the ideal oocyte. Reprod Biomed Online. 2007;15:346–53.

    Article  PubMed  CAS  Google Scholar 

  22. Fragouli E, Bianchi V, Delhanty J, Patrizio P and Wells D (2007) Gene expression analysis of human oocytes: towards a non-invasive diagnosis of meiotic aneuploidy. Hum Reprod. 22(Suppl 1):i32, O-078.

    Google Scholar 

  23. Gasca S, Pellestor F, Assou S, Loup V, Anahory T, Dechaud H, De Vos J, Hamamah S. Identifying new human oocyte marker genes: a microarray approach. Reprod Biomed Online. 2007;14:175–83.

    Article  PubMed  CAS  Google Scholar 

  24. Cillo F, Brevini TAL, Antonini S, Paffoni S, Ragni G, Gandolfi F. Association between human oocyte developmental competence and expression levels of some cumulus genes. Reproduction. 2007;134:645–50.

    Article  PubMed  CAS  Google Scholar 

  25. Feuerstein P, Cadoret V, Dalbies-Tran R, Guerif F, Bidault R, Royere D. Gene expression in human cumulus cells: one approach to oocyte competence. Hum Reprod. 2007;22:3069–77.

    Article  PubMed  CAS  Google Scholar 

  26. Van Montfoort APA, Geraedts JPM, Dumoulin JCM, Stassen APM, Evers JLH, Ayoubi TAY. Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: a microarray analysis. Mol Hum Reprod. 2008;14:157–68.

    Article  PubMed  Google Scholar 

  27. Hamel M, Dufort I, Robert C, Gravel C, Leveille MC, Leader A, Sirard MA. Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum Reprod. 2008;23:1118–27.

    Article  PubMed  CAS  Google Scholar 

  28. Assou S, Haouzi D, Mahmoud K, Aouacheria A, Guillemin Y, Pantesco V, Rème T, Dechaud H, De Vos J, Hamamah S. A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study. Mol Hum Reprod. 2008;14:711–9.

    Article  PubMed  CAS  Google Scholar 

  29. Wells D, Fragouli E, Bianchi V, Borini A, Patrizio P. Identification of novel non-invasive biomarkers of oocyte aneuploidy. Fertil Steril. 2008;90 Suppl 1:S35.

    Article  Google Scholar 

  30. Gregory L. Ovarian markers of implantation potential in assisted reproduction. Hum Reprod. 1998;4:117–32.

    Article  Google Scholar 

  31. McKenzie LJ, Pangas SA, Carson SA, Kovanci E, Cisneros P, Buster JE, Amato P, Matzuk MM. Human cumulus cells granulosa cell gene expression: a predictor of fertilisation and embryo selection in women undergoing IVF. Hum Reprod. 2004;19:2869–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Dagan Wells is funded by NIHR Biomedical Research Centre Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagan Wells PhD, FRCPath .

Editor information

Editors and Affiliations

Glossary

Downregulated/underexpressed

Cases where fewer mRNA transcripts are found. Gene expression is reduced (i.e., the gene is less active).

Gene expression

A complete set of all of the genes (i.e., the entire genome) is present in all cells. However, only a fraction of these genes are active in a cell at any given moment. Genes which are being actively transcribed, producing mRNA and ultimately proteins, are said to be “expressed.”

Microarray

A method for simultaneously quantifying the number of transcripts from large numbers of genes (typically thousands or tens of thousands of genes simultaneously assessed).

mRNA

transcripts The molecules that serve as intermediates between genes (made of deoxyribonucleic acid, DNA) and the proteins they produce. The DNA sequence of a gene is transcribed into a messenger RNA (ribonucleic acid) copy, which is subsequently translated into a polypeptide.

Real-time PCR

A method of quantifying the number of mRNA transcripts from individual genes. Real-time PCR is generally considered the most accurate method for quantifying gene expression but only allows analysis of small numbers of genes at a time.

Transcriptome

The sum total of all mRNA transcripts found within an individual cell or tissue. The charac­terization of the transcriptome reveals all of the genes expressed (i.e., active).

Upregulated/overexpressed

When two different samples are compared, some genes may be found to have dif­ferences in the number of mRNA transcripts. If a sample contains a greater number of mRNA transcripts than expected, the gene is said to be upregulated or overexpressed (i.e., it is more active).

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wells, D. (2012). Cumulus Cell Gene Expression in Assessment of Oocyte Quality. In: Nagy, Z., Varghese, A., Agarwal, A. (eds) Practical Manual of In Vitro Fertilization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1780-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1780-5_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1779-9

  • Online ISBN: 978-1-4419-1780-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics