Skip to main content

Polarization Microscopy

  • Chapter
  • First Online:

Abstract

The potential of an embryo to implant is a key element for the success in assisted reproduction. Morphological criteria of oocytes and embryos and developmental progression during the preimplantation phase were considered as a strong predictor for embryo implantation. Recently, polarization light microscopy has enabled the detection of structures within oocytes which possess a natural birefringence. Birefringence analysis of living human oocytes represents a new approach in assessing oocyte viability and embryo potential. The present knowledge of birefringence imaging will be summarized especially in regard to their impact on assisted reproduction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schmidt WJ. Die Bausteine des Tierkörpers in polarisiertem Licht. Bonn: Cohen; 1924.

    Google Scholar 

  2. Inoué S. Polarization optical studies of the mitotic spindle. I. The demonstration of spindle fibers in living cells. Chromosoma. 1953;5:487–500.

    Article  PubMed  Google Scholar 

  3. Swann MM, Mitchison JM. Refinements in polarized light microscopy. J Exp Biol. 1950;27:226–37.

    PubMed  CAS  Google Scholar 

  4. Sato H, Ellis GW, Inoué S. Microtubular origin of mitotic spindle form birefringence: demonstration of the applicability of Wiener’s equation. J Cell Biol. 1975;67:501–17.

    Article  PubMed  CAS  Google Scholar 

  5. Inoué S. Video image processing greatly enhances contrast, quality and speed in polarization-based microscopy. J Cell Biol. 1981;89:346–56.

    Article  PubMed  Google Scholar 

  6. Engelmann TW. Contractilität und Dopperbrechung. Pflugers Arch. 1875;11:432–64.

    Article  Google Scholar 

  7. Schmidt WJ. Die Doppelbrechung von Karyoplasma, Zytoplasma und Metaplasma. Berlin: Bornträger; 1937.

    Google Scholar 

  8. Oldenbourg R, Mei G. New polarized light microscope with precision universal compensator. J Microsc. 1995;180:140–7.

    Article  PubMed  CAS  Google Scholar 

  9. Keefe D, Tran P, Pellegrini C, Oldenbourg R. Polarized light microscopy and digital image processing identify a multilaminar structure of the hamster zona pellucida. Hum Reprod. 1997;12:1250–2.

    Article  PubMed  CAS  Google Scholar 

  10. Silva CS, Kapura K, Oldenbourg R, Keefe DL. The first polar body does not predict accurately the location of the metaphase II meiotic spindle in mammalian oocytes. Fertil Steril. 1999;71:719–21.

    Article  PubMed  CAS  Google Scholar 

  11. Rienzi L, Martinez F, Ubaldi F, et al. Polscope analysis of meiotic spindle changes in living metaphase II human oocytes during the freezing and thawing procedures. Hum Reprod. 2004;19:655–9.

    Article  PubMed  CAS  Google Scholar 

  12. Montag M, Schimming T, van der Ven H. Spindle imaging in human oocytes: the impact of the meiotic cell cycle. Reprod Biomed Online. 2006;12:442–6.

    Article  PubMed  Google Scholar 

  13. Rienzi L, Ubaldi F, Martinez F, et al. Relationship between meiotic spindle location with regard to polar body position and oocyte developmental potential after ICSI. Hum Reprod. 2003;18:1289–93.

    Article  PubMed  CAS  Google Scholar 

  14. Cooke S, Tyler JP, Driscoll GL. Meiotic spindle location and identification and its effect on embryonic cleavage plane and early development. Hum Reprod. 2003;18:2397–405.

    Article  PubMed  CAS  Google Scholar 

  15. Taylor TH, Chang CC, Elliott T, et al. Effect of denuding on polar body position in in-vitro matured oocytes. Reprod Biomed Online. 2008;17:515–9.

    Article  PubMed  Google Scholar 

  16. Petersen C, Oliveira JBA, Mauri AL, et al. Relationship between visualization of meiotic spindle in human oocytes and ICSI outcomes: a meta-analysis. Reprod Biomed Online. 2009;18:235–43.

    Article  PubMed  CAS  Google Scholar 

  17. Bianchi V, Coticchio G, Fava L, et al. Meiotic spindle imaging in human oocytes frozen with a slow freezing procedure involving high sucrose concentration. Hum Reprod. 2005;20:1078–83.

    Article  PubMed  CAS  Google Scholar 

  18. Sereni E, Sciajno R, Fava L, et al. A polscope evaluation of meiotic spindle dynamics in frozen-thawed oocytes. Reprod Biomed Online. 2009;19:191–7.

    Article  PubMed  CAS  Google Scholar 

  19. Chen CK, Wang CW, Tsai WJ, et al. Evaluation of meiotic spindles in thawed oocytes after vitrification using polarized light microscopy. Fertil Steril. 2004;82:666–72.

    Article  PubMed  Google Scholar 

  20. Larman MG, Minasi MG, Rienzi L, Gardner DK. Maintenance of the meiotic spindle during vitrification in human and mouse oocytes. Reprod Biomed Online. 2007;15:692–700.

    Article  PubMed  CAS  Google Scholar 

  21. Hyun CS, Cha JH, Son WY, et al. Optimal ICSI timing after the first polar body extrusion in in vitro matured human oocytes. Hum Reprod. 2007;22:1991–5.

    Article  PubMed  Google Scholar 

  22. Sun XF, Zhang WH, Chen XJ. Spindle dynamics in living mouse oocytes during meiotic maturation, aging, cooling and overheating: a study by polarized light microscopy. Zygote. 2004;12:241–9.

    Article  PubMed  Google Scholar 

  23. Wang WH, Keefe DL. Prediction of chromosome misalignment among in vitro matured human oocytes by spindle imaging with the polscope. Fertil Steril. 2002;78:1077–81.

    Article  PubMed  Google Scholar 

  24. Fang C, Tang M, Li T, et al. Visualization of meiotic spindle and subsequent embryo development in in vitro and in vivo matured human oocytes. J Assist Reprod Genet. 2007;24:547–51.

    Article  PubMed  Google Scholar 

  25. Wang WH, Meng L, Hackett RJ, et al. Limited recovery of meiotic spindles in living human oocytes after cooling-rewarming observed using polarized light microscopy. Hum Reprod. 2001;16:2374–8.

    PubMed  CAS  Google Scholar 

  26. Montag M, van der Ven H. Oocyte assessment and embryo viability prediction: birefringence imaging. Reprod Biomed Online. 2008;17:454–60.

    Article  PubMed  CAS  Google Scholar 

  27. Pelletier C, Keefe DL, Trimarchi JR. Noninvasive polarized light microscopy quantitatively distinguishes the multilaminar structure of the zona pellucida of living human eggs and embryos. Fertil Steril. 2004;81:850–6.

    Article  PubMed  Google Scholar 

  28. Ten J, Mendiola J, Vioque J, et al. Donor oocyte dysmorphisms and their influence on fertilization and embryo quality. Reprod Biomed Online. 2007;14:40–8.

    Article  PubMed  Google Scholar 

  29. Shen Y, Stalf T, Mehnert C, et al. High magnitude of light retardation by the zona pellucida is associated with conception cycles. Hum Reprod. 2005;20:1596–606.

    Article  PubMed  CAS  Google Scholar 

  30. Rama Raju GA, Prakash GJ, Krishna KM, Madan K. Meiotic spindle and zona pellucida characteristics as predictors of embryonic development: a preliminary study using polscope imaging. Reprod Biomed Online. 2007;14:166–74.

    Article  PubMed  CAS  Google Scholar 

  31. Montag M, Schimming T, Köster M, et al. Oocyte zona birefringence intensity is associated with embryonic implantation potential in ICSI cycles. Reprod Biomed Online. 2008;16:239–44.

    Article  PubMed  CAS  Google Scholar 

  32. Frattarelli JL, Miller KA, Fletcher-Holmes DW, et al. The use of quantitative birefringence imaging to assess oocyte competence. Hum Reprod. 2007;22 Suppl 1:i166.

    Google Scholar 

  33. Ebner T, Balaban B, Moser M, et al. Automatic user-independent zona pellucida imaging at the oocyte stage allows for the prediction of preimplantation development. Fertil Steril. 2010;94(3):913–20.

    Article  PubMed  Google Scholar 

  34. Madaschi C, Aoki T, de Almeida Ferreira Braga DP, et al. Zona pellucida birefringence score and meiotic spindle visualization in relation to embryo development and ICSI outcomes. Reprod Biomed Online. 2009;18:681–6.

    Article  PubMed  Google Scholar 

  35. Van der Ven K, Montag M, Drengner C, et al. Differential gene expression profiles in cells of the corona radiata and outer cumulus oophorus in relation to oocyte competence. Hum Reprod. 2009;24 Suppl 1:i32.

    Google Scholar 

  36. Gianaroli L, Magli MC, Collodel G, et al. Sperm head’s birefringence: a new criterion for selection? Fertil Steril. 2008;90:104–12.

    Article  PubMed  Google Scholar 

  37. Gianaroli L, Magli MC, Ferraretti A, et al. Birefringence characteristics in sperm heads allow for the selection of reacted spermatozoa for intracytoplasmic sperm injection. Fertil Steril. 2010;93(3):807–13.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Montag PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Montag, M., Köster, M., van der Ven, H. (2012). Polarization Microscopy. In: Nagy, Z., Varghese, A., Agarwal, A. (eds) Practical Manual of In Vitro Fertilization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1780-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1780-5_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1779-9

  • Online ISBN: 978-1-4419-1780-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics