Skip to main content

Culture Media in IVF: Decisions for the Laboratory

  • Chapter
  • First Online:
Practical Manual of In Vitro Fertilization

Abstract

Appreciation of the evolution of IVF culture media, highlighting salient discoveries that have led to the tremendous improvement over just a few short years ago, is instrumental in gaining insight into the complexities of gamete and embryo function. In turn, this knowledge brings understanding to the rationale behind current laboratory practices and aids in the ability to make informed decisions in regard to culture methods. Furthermore, discussion of impact of culture media on homeostatic regulation of gametes and embryos, focusing on key decisions made within the laboratory such as media type, macromolecule selection, and pH, further highlights their delicate nature, the need to minimize stressors, and ultimately provides insight into areas where future improvement can be made as we continue to strive for improvement in IVF success rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steptoe PC, Edwards RG, et al. Human blastocysts grown in culture. Nature. 1971;229(5280):132–3.

    Article  PubMed  CAS  Google Scholar 

  2. Steptoe PC, Edwards RG. Reimplantation of a human embryo with subsequent tubal pregnancy. Lancet. 1976;1(7965):880–2.

    Article  PubMed  CAS  Google Scholar 

  3. Pool T, Atiee S, et al. Oocyte and embryo culture: basic concepts and recent advances. Infert Reprod Med Clin North Am. 1998;9(2):181–203.

    Google Scholar 

  4. Menezo Y, Testart J, et al. Serum is not necessary in human in vitro fertilization, early embryo culture, and transfer. Fertil Steril. 1984;42(5):750–5.

    PubMed  CAS  Google Scholar 

  5. Quinn P, Kerin J, et al. Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil Steril. 1985;44:493–8.

    PubMed  CAS  Google Scholar 

  6. Gardner DK, Pool TB, et al. Embryo nutrition and energy metabolism and its relationship to embryo growth, differentiation, and viability. Semin Reprod Med. 2000;18(2):205–18.

    Article  PubMed  CAS  Google Scholar 

  7. Pool TB. Recent advances in the production of viable human embryos in vitro. Reprod Biomed Online. 2002;4(3):294–302.

    Article  PubMed  Google Scholar 

  8. Gardner DK, Lane M, et al. Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil Steril. 1996;65(2):349–53.

    PubMed  CAS  Google Scholar 

  9. Biggers JD, Summers MC. Choosing a culture medium: making informed choices. Fertil Steril. 2008;90(3):473–83.

    Article  PubMed  Google Scholar 

  10. Macklon NS, Pieters MH, et al. A prospective randomized comparison of sequential versus monoculture systems for in-vitro human blastocyst development. Hum Reprod. 2002;17(10):2700–5.

    Article  PubMed  CAS  Google Scholar 

  11. Biggers JD, McGinnis LK, et al. One-step versus two-step culture of mouse preimplantation embryos: is there a difference? Hum Reprod. 2005;20(12):3376–84.

    Article  PubMed  CAS  Google Scholar 

  12. Reed ML, Hamic A, et al. Continuous uninterrupted single medium culture without medium renewal versus sequential media culture: a sibling embryo study. Fertil Steril. 2009;92(5):1783–6.

    Article  PubMed  Google Scholar 

  13. Leese HJ. Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. Bioessays. 2002;24(9):845–9.

    Article  PubMed  Google Scholar 

  14. Leese HJ, Baumann CG, et al. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod. 2008;14(12):667–72.

    Article  PubMed  CAS  Google Scholar 

  15. Gardner DK. Dissection of culture media for embryos: the most important and less important components and characteristics. Reprod Fertil Dev. 2008;20(1):9–18.

    Article  PubMed  Google Scholar 

  16. Hardy K, Hooper M, et al. Non-invasive measurement of glucose and pyruvate uptake by individual human oocytes and preimplantation embryos. Hum Reprod. 1989;4(2):188–91.

    PubMed  CAS  Google Scholar 

  17. Gott A, Hardy K, et al. Non-invasive measurement of pyruvate and glucose uptake and lactate production by single human preimplantation embryos. Hum Reprod. 1990;5(1):104–8.

    PubMed  CAS  Google Scholar 

  18. Gardner D, Lane M, et al. Uptake and metabolism of pyruvate and glucose by individual sheep preattachment embryos developed in vivo. Mol Reprod Dev. 1993;36(3):313–9.

    Article  PubMed  CAS  Google Scholar 

  19. Devreker F, Hardy K, et al. Noninvasive assessment of glucose and pyruvate uptake by human embryos after intracytoplasmic sperm injection and during the formation of pronuclei. Fertil Steril. 2000;73(5):947–54.

    Article  PubMed  CAS  Google Scholar 

  20. Lane M, Gardner DK. Inhibiting 3-phosphoglycerate kinase by EDTA stimulates the development of the cleavage stage mouse embryo. Mol Reprod Dev. 2001;60(2):233–40.

    Article  PubMed  CAS  Google Scholar 

  21. Conaghan J, Handyside AH, et al. Effects of pyruvate and glucose on the development of human preimplantation embryos in vitro. J Reprod Fertil. 1993;99(1):87–95.

    Article  PubMed  CAS  Google Scholar 

  22. Carrillo AJ, Lane B, et al. Improved clinical outcomes for in vitro fertilization with delay of embryo transfer from 48 to 72 hours after oocyte retrieval: use of glucose- and phosphate-free media. Fertil Steril. 1998;69(2):329–34.

    Article  PubMed  CAS  Google Scholar 

  23. Coates A, Rutherford AJ, et al. Glucose-free medium in human in vitro fertilization and embryo transfer: a large-scale, prospective, randomized clinical trial. Fertil Steril. 1999;72(2):229–32.

    Article  PubMed  CAS  Google Scholar 

  24. Ben-Yosef D, Amit A, et al. Prospective randomized comparison of two embryo culture systems: P1 medium by Irvine Scientific and the Cook IVF Medium. J Assist Reprod Genet. 2004;21(8):291–5.

    Article  PubMed  Google Scholar 

  25. Whitten WK. Culture of tubal ova. Nature. 1957;179(4569):1081–2.

    Article  PubMed  CAS  Google Scholar 

  26. Brinster R. Studies on the development of mouse embryos in vitro. II. The effect of energy source. J Exp Zool. 1965;158:59–68.

    Article  PubMed  CAS  Google Scholar 

  27. Biggers JD, Whittingham DG, et al. The pattern of energy metabolism in the mouse oocyte and zygote. Proc Natl Acad Sci U S A. 1967;58(2):560–7.

    Article  PubMed  CAS  Google Scholar 

  28. Gardner DK, Leese HJ. Non-invasive measurement of nutrient uptake by single cultured pre-implantation mouse embryos. Hum Reprod. 1986;1(1):25–7.

    PubMed  CAS  Google Scholar 

  29. Leese HJ, Hooper MA, et al. Uptake of pyruvate by early human embryos determined by a non-invasive technique. Hum Reprod. 1986;1(3):181–2.

    PubMed  CAS  Google Scholar 

  30. Hardy K, Hooper MA, et al. Non-invasive measurement of glucose and pyruvate uptake by individual human oocytes and preimplantation embryos. Hum Reprod. 1989;4(2):188–91.

    PubMed  CAS  Google Scholar 

  31. Wales RG, Whittingham DG. The metabolism of specifically labelled lactate and pyruvate by two-cell mouse embryos. J Reprod Fertil. 1973;33(2):207–22.

    Article  PubMed  CAS  Google Scholar 

  32. Lane M, Gardner DK. Lactate regulates pyruvate uptake and metabolism in the preimplantation mouse embryo. Biol Reprod. 2000;62(1):16–22.

    Article  PubMed  CAS  Google Scholar 

  33. Gibb CA, Poronnik P, et al. Control of cytosolic pH in two-cell mouse embryos: roles of H(+)-lactate cotransport and Na+/H+ exchange. Am J Physiol. 1997;273(2 Pt 1):C404–19.

    PubMed  CAS  Google Scholar 

  34. Edwards LJ, Williams DA, et al. Intracellular pH of the preimplantation mouse embryo: effects of extracellular pH and weak acids. Mol Reprod Dev. 1998;50(4):434–42.

    Article  PubMed  CAS  Google Scholar 

  35. Lane M, Gardner DK. Regulation of ionic homeostasis by mammalian embryos. Semin Reprod Med. 2000;18(2):195–204.

    Article  PubMed  CAS  Google Scholar 

  36. Gardner DK, Lane M. Culture systems for human embryos. In: Gardner DK, Weissman A, Howles C, Zeev S, editors. Textbook of assisted reproductive technologies. Boca Raton: Informa UK Ltd; 2009. p. 219–40.

    Google Scholar 

  37. McKiernan SH, Clayton MK, et al. Analysis of stimulatory and inhibitory amino acids for development of hamster one-cell embryos in vitro. Mol Reprod Dev. 1995;42(2):188–99.

    Article  PubMed  CAS  Google Scholar 

  38. Lane M, Gardner DK. Differential regulation of mouse embryo development and viability by amino acids. J Reprod Fertil. 1997;109(1):153–64.

    Article  PubMed  CAS  Google Scholar 

  39. Ho Y, Wigglesworth K, et al. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol Reprod Dev. 1995;41(2):232–8.

    Article  PubMed  CAS  Google Scholar 

  40. Biggers JD, McGinnis LK, et al. Amino acids and preimplantation development of the mouse in protein-free potassium simplex optimized medium. Biol Reprod. 2000;63(1):281–93.

    Article  PubMed  CAS  Google Scholar 

  41. Summers MC, McGinnis LK, et al. IVF of mouse ova in a simplex optimized medium supplemented with amino acids. Hum Reprod. 2000;15(8):1791–801.

    Article  PubMed  CAS  Google Scholar 

  42. Gardner DK, Lane M. Alleviation of the ‘2-cell block’ and development to the blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Hum Reprod. 1996;11(12):2703–12.

    Article  PubMed  CAS  Google Scholar 

  43. Gardner DK, Lane M. Amino acids and ammonium regulate mouse embryo development in culture. Biol Reprod. 1993;48(2):377–85.

    Article  PubMed  CAS  Google Scholar 

  44. Lane M, Gardner DK. Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions. J Reprod Fertil. 1994;102(2):305–12.

    Article  PubMed  CAS  Google Scholar 

  45. Lane M, Hooper K, et al. Effect of essential amino acids on mouse embryo viability and ammonium production. J Assist Reprod Genet. 2001;18(9):519–25.

    Article  PubMed  CAS  Google Scholar 

  46. Lane M, Gardner DK. Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol Reprod. 2003;69(4):1109–17.

    Article  PubMed  CAS  Google Scholar 

  47. Zander DL, Thompson JG, et al. Perturbations in mouse embryo development and viability caused by ammonium are more severe after exposure at the cleavage stages. Biol Reprod. 2006;74(2):288–94.

    Article  PubMed  CAS  Google Scholar 

  48. Biggers JD, McGinnis LK, et al. Discrepancies between the effects of glutamine in cultures of preimplantation mouse embryos. Reprod Biomed Online. 2004;9(1):70–3.

    Article  PubMed  CAS  Google Scholar 

  49. Biggers JD, McGinnis LK, et al. Enhanced effect of glycyl-L-glutamine on mouse preimplantation embryos in vitro. Reprod Biomed Online. 2004;9(1):59–69.

    Article  PubMed  CAS  Google Scholar 

  50. Summers MC, McGinnis LK, et al. Mouse embryo development following IVF in media containing either L-glutamine or glycyl-L-glutamine. Hum Reprod. 2005;20(5):1364–71.

    Article  PubMed  CAS  Google Scholar 

  51. Baltz JM, Tartia AP. Cell volume regulation in oocytes and early embryos: connecting physiology to successful culture media. Hum Reprod. 2010;15(2):166–76.

    Google Scholar 

  52. Richards T, Wang F, et al. Rescue of postcompaction stage mouse embryo development from hypertonicity by amino acid transporter substrates that may function as organic osmolytes. Biol Reprod. 2010;82(4):769–77.

    Article  PubMed  CAS  Google Scholar 

  53. Van Winkle LJ, Haghighat N, et al. Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J Exp Zool. 1990;253(2):215–9.

    Article  PubMed  Google Scholar 

  54. Lawitts JA, Biggers JD. Joint effects of sodium chloride, glutamine, and glucose in mouse preimplantation embryo culture media. Mol Reprod Dev. 1992;31(3):189–94.

    Article  PubMed  CAS  Google Scholar 

  55. Pool T. Blastocyst development in culture: the role of macromolecules. In: Gardner DK, Lane M, editors. ART and the human blastocyst. New York: Springer; 2001. p. 105–17.

    Chapter  Google Scholar 

  56. McKiernan SH, Bavister BD. Different lots of bovine serum albumin inhibit or stimulate in vitro development of hamster embryos. In Vitro Cell Dev Biol. 1992;28A(3 Pt 1):154–6.

    Article  PubMed  CAS  Google Scholar 

  57. Bavister BD, Kinsey DL, et al. Recombinant human albumin supports hamster in-vitro fertilization. Hum Reprod. 2003;18(1):113–6.

    Article  PubMed  CAS  Google Scholar 

  58. Bungum M, Humaidan P, et al. Recombinant human albumin as protein source in culture media used for IVF: a prospective randomized study. Reprod Biomed Online. 2002;4(3):233–6.

    Article  PubMed  CAS  Google Scholar 

  59. Pool TB, Martin JE. High continuing pregnancy rates after in vitro fertilization-embryo transfer using medium supplemented with a plasma protein fraction containing alpha- and beta-globulins. Fertil Steril. 1994;61(4):714–9.

    PubMed  CAS  Google Scholar 

  60. Meintjes M, Chantilis SJ, et al. A randomized controlled study of human serum albumin and serum substitute supplement as protein supplements for IVF culture and the effect on live birth rates. Hum Reprod. 2009;24(4):782–9.

    Article  PubMed  CAS  Google Scholar 

  61. Ben-Yosef D, Yovel I, et al. Increasing synthetic serum substitute (SSS) concentrations in P1 glucose/phosphate-free medium improves implantation rate: a comparative study. J Assist Reprod Genet. 2001;18(11):588–92.

    Article  PubMed  CAS  Google Scholar 

  62. Lane M, Maybach JM, et al. Cryo-survival and development of bovine blastocysts are enhanced by culture with recombinant albumin and hyaluronan. Mol Reprod Dev. 2003;64(1):70–8.

    Article  PubMed  Google Scholar 

  63. Gardner DK, Rodriegez-Martinez H, et al. Fetal development after transfer is increased by replacing protein with the glycosaminoglycan hyaluronan for mouse embryo culture and transfer. Hum Reprod. 1999;14(10):2575–80.

    Article  PubMed  CAS  Google Scholar 

  64. Palasz AT, Rodriguez-Martinez H, et al. Effects of hyaluronan, BSA, and serum on bovine embryo in vitro development, ultrastructure, and gene expression patterns. Mol Reprod Dev. 2006;73(12):1503–11.

    Article  PubMed  CAS  Google Scholar 

  65. Swain J, Smith G. Cryoprotectants. In: Chian R, Quinn P, editors.Cryopreservation in female fertility preservation. Cambridge:Cambridge Publishing; 2010.

    Google Scholar 

  66. Dale B, Menezo Y, Cohen J, et al. Intracellular pH regulation in the human oocyte. Hum Reprod 1998; 13(4): 964–970.

    Article  PubMed  CAS  Google Scholar 

  67. Phillips KP, Petrunewich MA, et al. The intracellular pH-regulatory HCO −3 /Cl− exchanger in the mouse oocyte is inactivated during first meiotic metaphase and reactivated after egg ­activation via the MAP kinase pathway. Mol Biol Cell. 2002;13(11):3800–10.

    Article  PubMed  CAS  Google Scholar 

  68. Erdogan S, FitzHarris G, et al. Mechanisms regulating intracellular pH are activated during growth of the mouse oocyte coincident with acquisition of meiotic competence. Dev Biol. 2005;286(1):352–60.

    Article  PubMed  CAS  Google Scholar 

  69. Fitzharris G, Baltz J. Regulation of intracellular pH during oocyte growth and maturation in mammals. Reproduction. 2009;138(4):619–27.

    Article  PubMed  CAS  Google Scholar 

  70. Squirrell JM, Lane M, et al. Altering intracellular pH disrupts development and cellular organization in preimplantation hamster embryos. Biol Reprod. 2001;64(6):1845–54.

    Article  PubMed  CAS  Google Scholar 

  71. Lane M, Lyons EA, et al. Cryopreservation reduces the ability of hamster 2-cell embryos to regulate intracellular pH. Hum Reprod. 2000;15(2):389–94.

    Article  PubMed  CAS  Google Scholar 

  72. Zander-Fox DL, Mitchell M, Thompson JG, Lane M. Alterations in mouse embryo intracellular pH by DMO during culture impair implantation and fetal growth. Reprod Biomed Online. 2010;21(2):219–29.

    Google Scholar 

  73. Fitzharris G, Baltz JM. Granulosa cells regulate intracellular pH of the murine growing oocyte via gap junctions: development of independent homeostasis during oocyte growth. Development. 2006;133(4):591–9.

    Article  PubMed  CAS  Google Scholar 

  74. FitzHarris G, Siyanov V, et al. Granulosa cells regulate oocyte intracellular pH against acidosis in preantral follicles by multiple mechanisms. Development. 2007;134(23):4283–95.

    Article  PubMed  CAS  Google Scholar 

  75. Lane M, Baltz JM, et al. Na+/H+ antiporter activity in hamster embryos is activated during fertilization. Dev Biol. 1999;208(1):244–52.

    Article  PubMed  CAS  Google Scholar 

  76. Phillips KP, Baltz JM. Intracellular pH regulation by HCO −3 /Cl− exchange is activated during early mouse zygote development. Dev Biol. 1999;208(2):392–405.

    Article  PubMed  CAS  Google Scholar 

  77. Zhu ZY, Chen DY, et al. Rotation of meiotic spindle is controlled by microfilaments in mouse oocytes. Biol Reprod. 2003;68(3):943–6.

    Article  PubMed  CAS  Google Scholar 

  78. Lenart P, Bacher CP, et al. A contractile nuclear actin network drives chromosome congression in oocytes. Nature. 2005;436(7052):812–8.

    Article  PubMed  CAS  Google Scholar 

  79. Regula CS, Pfeiffer JR, et al. Microtubule assembly and disassembly at alkaline pH. J Cell Biol. 1981;89(1):45–53.

    Article  PubMed  CAS  Google Scholar 

  80. Bavister BD, Squirrell JM. Mitochondrial distribution and function in oocytes and early embryos. Hum Reprod. 2000;15 Suppl 2:189–98.

    Article  PubMed  Google Scholar 

  81. Nagai S, Mabuchi T, et al. Correlation of abnormal mitochondrial distribution in mouse oocytes with reduced developmental competence. Tohoku J Exp Med. 2006;210(2):137–44.

    Article  PubMed  CAS  Google Scholar 

  82. Krisher RL, Bavister BD. Enhanced glycolysis after maturation of bovine oocytes in vitro is associated with increased developmental competence. Mol Reprod Dev. 1999;53(1):19–26.

    Article  PubMed  CAS  Google Scholar 

  83. Spindler RE, Pukazhenthi BS, et al. Oocyte metabolism predicts the development of cat embryos to blastocyst in vitro. Mol Reprod Dev. 2000;56(2):163–71.

    Article  PubMed  CAS  Google Scholar 

  84. John DP, Kiessling AA. Improved pronuclear mouse embryo development over an extended pH range in Ham’s F-10 medium without protein. Fertil Steril. 1988;49(1):150–5.

    PubMed  CAS  Google Scholar 

  85. Lane M, Baltz JM, et al. Regulation of intracellular pH in hamster preimplantation embryos by the sodium hydrogen (Na+/H+) antiporter. Biol Reprod. 1998;59(6):1483–90.

    Article  PubMed  CAS  Google Scholar 

  86. Leclerc C, Becker D, et al. Low intracellular pH is involved in the early embryonic death of DDK mouse eggs fertilized by alien sperm. Dev Dyn. 1994;200(3):257–67.

    Article  PubMed  CAS  Google Scholar 

  87. Zhao Y, Chauvet PJ, et al. Expression and function of bicarbonate/chloride exchangers in the preimplantation mouse embryo. J Biol Chem. 1995;270(41):24428–34.

    Article  PubMed  CAS  Google Scholar 

  88. Zhao Y, Baltz JM. Bicarbonate/chloride exchange and intracellular pH throughout preimplantation mouse embryo development. Am J Physiol. 1996;271(5 Pt 1):C1512–20.

    PubMed  CAS  Google Scholar 

  89. Lane M, Bavister BD. Regulation of intracellular pH in bovine oocytes and cleavage stage embryos. Mol Reprod Dev. 1999;54(4):396–401.

    Article  PubMed  CAS  Google Scholar 

  90. Brinster RL. Studies on the development of mouse embryos in vitro. I. The effect of osmolarity and hydrogen ion concentration. J Exp Zool. 1965;158:49–57.

    Article  PubMed  CAS  Google Scholar 

  91. Hershlag A, Feng H. The effect of CO2 concentration and pH on the in vitro development of mouse embryos. Fertil Mag. 2001;4:21–2.

    Google Scholar 

  92. Summers MC, Biggers JD. Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update. 2003;9(6):557–82.

    Article  PubMed  CAS  Google Scholar 

  93. Steel T, Conaghan J. pH equilibration dynamics of culture medium under oil. Fertil Steril. 2008;89 suppl 2:s27.

    Article  Google Scholar 

  94. Swain JE, Pool TB. Supplementation of culture media with zwitterinoic buffers supports sperm function and embryo development within the elevated CO2 levels of the laboratory incubator. J Clinic Embryol. 2008;11(2):24.

    Google Scholar 

  95. Barnett DK, Bavister BD. Inhibitory effect of glucose and phosphate on the second cleavage division of hamster embryos: is it linked to metabolism? Hum Reprod. 1996;11(1):177–83.

    Article  PubMed  CAS  Google Scholar 

  96. Barnett DK, Clayton MK, et al. Glucose and phosphate toxicity in hamster preimplantation embryos involves disruption of cellular organization, including distribution of active mitochondria. Mol Reprod Dev. 1997;48(2):227–37.

    Article  PubMed  CAS  Google Scholar 

  97. Lane M, Ludwig TE, et al. Phosphate induced developmental arrest of hamster two-cell embryos is associated with disrupted ionic homeostasis. Mol Reprod Dev. 1999;54(4):410–7.

    Article  PubMed  CAS  Google Scholar 

  98. Farrell PS, Bavister BD. Short-term exposure of two-cell hamster embryos to collection media is detrimental to viability. Biol Reprod. 1984;31(1):109–14.

    Article  PubMed  CAS  Google Scholar 

  99. Escriba MJ, Silvestre MA, et al. Comparison of the effect of two different handling media on rabbit zygote developmental ability. Reprod Nutr Dev. 2001;41(2):181–6.

    Article  PubMed  CAS  Google Scholar 

  100. Palasz AT, Brena PB, et al. The effect of different zwitterionic buffers and PBS used for out-of-incubator procedures during standard in vitro embryo production on development, morphology and gene expression of bovine embryos. Theriogenology. 2008;70(9):1461–70.

    Article  PubMed  CAS  Google Scholar 

  101. Good NE, Winget GD, et al. Hydrogen ion buffers for biological research. Biochemistry. 1966;5(2):467–77.

    Article  PubMed  CAS  Google Scholar 

  102. Good NE, Izawa S. Hydrogen ion buffers. Methods Enzymol. 1972;24:53–68.

    Article  PubMed  CAS  Google Scholar 

  103. Ferguson WJ, Braunschweiger KI, et al. Hydrogen ion buffers for biological research. Anal Biochem. 1980;104(2):300–10.

    Article  PubMed  CAS  Google Scholar 

  104. Iwasaki T, Kimura E, et al. Studies on a chemically defined medium for in vitro culture of in vitro matured and fertilized porcine oocytes. Theriogenology. 1999;51(4):709–20.

    Article  PubMed  CAS  Google Scholar 

  105. Morgia F, Torti M, et al. Use of a medium buffered with N-hydroxyethylpiperazine-N-ethanesulfonate (HEPES) in intracytoplasmic sperm injection procedures is detrimental to the outcome of in vitro fertilization. Fertil Steril. 2006;85(5):1415–9.

    Article  PubMed  CAS  Google Scholar 

  106. Zigler Jr JS, Lepe-Zuniga JL, et al. Analysis of the cytotoxic effects of light-exposed HEPES-containing culture medium. In Vitro Cell Dev Biol. 1985;21(5):282–7.

    Article  PubMed  CAS  Google Scholar 

  107. Lepe-Zuniga JL, Zigler Jr JS, et al. Toxicity of light-exposed Hepes media. J Immunol Methods. 1987;103(1):145.

    Article  PubMed  CAS  Google Scholar 

  108. Butler JE, Lechene C, et al. Noninvasive measurement of glucose uptake by two populations of murine embryos. Biol Reprod. 1988;39(4):779–86.

    Article  PubMed  CAS  Google Scholar 

  109. Byrd SR, Flores-Foxworth G, et al. In vitro maturation of ovine oocytes in a portable incubator. Theriogenology. 1997;47(4):857–64.

    Article  PubMed  CAS  Google Scholar 

  110. Downs SM, Mastropolo AM. Culture conditions affect meiotic regulation in cumulus cell-enclosed mouse oocytes. Mol Reprod Dev. 1997;46(4):551–66.

    Article  PubMed  CAS  Google Scholar 

  111. Geshi M, Yonai M, et al. Improvement of in vitro co-culture systems for bovine embryos using a low concentration of carbon dioxide and medium supplemented with beta-mercaptoethanol. Theriogenology. 1999;51(3):551–8.

    Article  PubMed  CAS  Google Scholar 

  112. Bhattacharyya A, Yanagimachi R. Synthetic organic pH buffers can support fertilization of guinea pig eggs, but not as efficiently as bicarbonate buffer. Gamete Res. 1988;19(2):123–9.

    Article  PubMed  CAS  Google Scholar 

  113. Behr BR, Stratton CJ, et al. In vitro fertilization (IVF) of mouse ova in HEPES-buffered culture media. J In Vitro Fert Embryo Transf. 1990;7(1):9–15.

    Article  PubMed  CAS  Google Scholar 

  114. Hagen DR, Prather RS, et al. Development of one-cell porcine embryos to the blastocyst stage in simple media. J Anim Sci. 1991;69(3):1147–50.

    PubMed  CAS  Google Scholar 

  115. Lee MA, Storey BT. Bicarbonate is essential for fertilization of mouse eggs: mouse sperm require it to undergo the acrosome reaction. Biol Reprod. 1986;34(2):349–56.

    Article  PubMed  CAS  Google Scholar 

  116. Mahadevan MM, Fleetham J, et al. Growth of mouse embryos in bicarbonate media buffered by carbon dioxide, hepes, or phosphate. J In Vitro Fert Embryo Transf. 1986;3(5):304–8.

    Article  PubMed  CAS  Google Scholar 

  117. Ali J, Whitten WK, et al. Effect of culture systems on mouse early embryo development. Hum Reprod. 1993;8(7):1110–4.

    PubMed  CAS  Google Scholar 

  118. Ozawa M, Nagai T, et al. Successful pig embryonic development in vitro outside a CO2 gas-regulated incubator: effects of pH and osmolality. Theriogenology. 2006;65(4):860–9.

    Article  PubMed  Google Scholar 

  119. Liu Z, Foote RH, et al. Effect of amino acids and alpha-amanitin on the development of rabbit embryos in modified protein-free KSOM with HEPES. Mol Reprod Dev. 1996;45(2):157–62.

    Article  PubMed  CAS  Google Scholar 

  120. Graves CN, Biggers JD. Carbon dioxide fixation by mouse embryos prior to implantation. Science. 1970;167(924):1506–8.

    Article  PubMed  CAS  Google Scholar 

  121. Quinn P, Wales RG. Fixation of carbon dioxide by pre-implantation mouse embryos in vitro and the activities of enzymes involved in the process. Aust J Biol Sci. 1971;24(6):1277–90.

    PubMed  CAS  Google Scholar 

  122. Quinn P, Wales RG. Fixation of carbon dioxide by preimplantation rabbit embryos in vitro. J Reprod Fertil. 1974;36(1):29–39.

    Article  PubMed  CAS  Google Scholar 

  123. Swain JE, Pool TB. New pH-buffering system for media utilized during gamete and embryo manipulations for assisted reproduction. Reprod Biomed Online. 2009;18(6):799–810.

    Article  PubMed  Google Scholar 

  124. Phillips KP, Leveille MC, et al. Intracellular pH regulation in human preimplantation embryos. Hum Reprod. 2000;15(4):896–904.

    Article  PubMed  CAS  Google Scholar 

  125. Eagle H. Buffer combinations for mammalian cell culture. Science. 1971;174(8):500–3.

    Article  PubMed  CAS  Google Scholar 

  126. Hashimoto S, Nishihara T, et al. Medium without ammonium accumulation supports the developmental competence of human embryos. J Reprod Dev. 2008;54(5):370–4.

    Article  PubMed  Google Scholar 

  127. Bunton CA. Oxidation of α-diketones and α-keto acids by hydrogen peroxide. Nature. 1949;163:144.

    Article  Google Scholar 

  128. Morales H, Tilquin P, et al. Pyruvate prevents peroxide-induced injury of in vitro preimplantation bovine embryos. Mol Reprod Dev. 1999;52(2):149–57.

    Article  PubMed  CAS  Google Scholar 

  129. Orsi NM, Leese HJ. Protection against reactive oxygen species during mouse preimplantation embryo development: role of EDTA, oxygen tension, catalase, superoxide dismutase and pyruvate. Mol Reprod Dev. 2001;59(1):44–53.

    Article  PubMed  CAS  Google Scholar 

  130. O’Fallon JV, Wright RWJ. Pyruvate revisited: a non-metabolic role for pyruvate in preimplantation embryo development. Theriogenology. 1995;43:288.

    Article  Google Scholar 

  131. Montgomery CM, Webb JL. Metabolic studies on heart mitochondria. J Biol Chem. 1955;221:359–68.

    Google Scholar 

  132. Montgomery CM, Webb JL. Metabolic studies on heart mitochondria. II. The inhibitory action of parapyruvate on the tricarboxylic acid cycle. J Biol Chem. 1956;221(1):359–68.

    PubMed  CAS  Google Scholar 

  133. Wales R, Dg W. Decomposition of sodium pyruvate in culture media stored at 5°C and its effects on the development of the preimplantation mouse embryo. J Reprod Fertil. 1971;24:126.

    Article  CAS  Google Scholar 

  134. Kim JB, Yu YM, et al. Anti-inflammatory mechanism is involved in ethyl pyruvate-mediated efficacious neuroprotection in the postischemic brain. Brain Res. 2005;1060(1–2):188–92.

    Article  PubMed  CAS  Google Scholar 

  135. Lin RY, Vera JC, et al. Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter. J Biol Chem. 1998;273(44):28959–65.

    Article  PubMed  CAS  Google Scholar 

  136. Malaisse WJ, Jijakli H, et al. Insulinotropic action of methyl pyruvate: secretory, cationic, and biosynthetic aspects. Arch Biochem Biophys. 1996;335(2):229–44.

    Article  PubMed  CAS  Google Scholar 

  137. Varma SD, Devamanoharan PS, et al. Prevention of intracellular oxidative stress to lens by pyruvate and its ester. Free Radic Res. 1998;28(2):131–5.

    Article  PubMed  CAS  Google Scholar 

  138. Sims CA, Wattanasirichaigoon S, et al. Ringer’s ethyl pyruvate solution ameliorates ischemia/reperfusion-induced intestinal mucosal injury in rats. Crit Care Med. 2001;29(8):1513–8.

    Article  PubMed  CAS  Google Scholar 

  139. Rocheleau JV, Head WS, et al. Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response. J Biol Chem. 2004;279(30):31780–7.

    Article  PubMed  CAS  Google Scholar 

  140. Zeng J, Liu J, et al. Exogenous ethyl pyruvate versus pyruvate during metabolic recovery after oxidative stress in neonatal rat cerebrocortical slices. Anesthesiology. 2007;107(4):630–40.

    Article  PubMed  CAS  Google Scholar 

  141. Zeng J, Yang GY, et al. Pyruvate improves recovery after PARP-1-associated energy failure induced by oxidative stress in neonatal rat cerebrocortical slices. J Cereb Blood Flow Metab. 2007;27(2):304–15.

    Article  PubMed  CAS  Google Scholar 

  142. Dave SH, Tilstra JS, et al. Ethyl pyruvate decreases HMGB1 release and ameliorates murine colitis. J Leukoc Biol. 2009;86(3):633–43.

    Article  PubMed  CAS  Google Scholar 

  143. Di Paola R, Mazzon E, et al. Ethyl pyruvate reduces the development of zymosan-induced generalized inflammation in mice. Crit Care Med. 2009;37(1):270–82.

    Article  PubMed  CAS  Google Scholar 

  144. Yang R, Shaufl AL, et al. Ethyl pyruvate ameliorates liver injury secondary to severe acute pancreatitis. J Surg Res. 2009;153(2):302–9.

    Article  PubMed  CAS  Google Scholar 

  145. Swain JE, Pool TB. Supplementation of culture media with esterified forms of pyruvate improves mouse embryo development. In Proceedings from the ASRM Annual Meeting, San Francisco, CA; 2008.

    Google Scholar 

  146. Combelles CM, Gupta S, et al. Could oxidative stress influence the in-vitro maturation of oocytes? Reprod Biomed Online. 2009;18(6):864–80.

    Article  PubMed  Google Scholar 

  147. Wang X, Falcone T, et al. Vitamin C and vitamin E supplementation reduce oxidative stress-induced embryo toxicity and improve the blastocyst development rate. Fertil Steril. 2002;78(6):1272–7.

    Article  PubMed  Google Scholar 

  148. Angle M. Using two concurrent sequential culture media improves pregnancy outcomes. Clinical Embryologist. 2006;9(1):5–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason E. Swain PhD, HCLD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Swain, J.E., Pool, T.B. (2012). Culture Media in IVF: Decisions for the Laboratory. In: Nagy, Z., Varghese, A., Agarwal, A. (eds) Practical Manual of In Vitro Fertilization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1780-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1780-5_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1779-9

  • Online ISBN: 978-1-4419-1780-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics