★ Time Optimal Control

Chapter

Abstract

The main job of an industrial robot is to move an object on a pre-specified path, rest to rest, repeatedly. To increase productivity, the robot should do its job in minimum time. We introduce a numerical method to solve the time optimal control problem of multi degree of freedom robots.

Keywords

Torque 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. Ailon, A., and Langholz, G., 1985, On the existence of time optimal control of mechanical manipulators, Journal of Optimization Theory and Applications, 46 (1), 1-21.MATHCrossRefMathSciNetGoogle Scholar
  2. Bahrami, M., and Jazar, Reza N., 1991, Optimal control of robotic manipulators: optimization algorithm, Amirkabir Journal, 5 (18), (in Persian).Google Scholar
  3. Bahrami M., and Jazar, Reza N., 1992, Optimal control of robotic manipulators: application, Amirkabir Journal, 5 (19), (in Persian).Google Scholar
  4. Bassein, R., 1989, An Optimization Problem, American Mathematical Monthly, 96 (8), 721-725.MATHCrossRefMathSciNetGoogle Scholar
  5. Bobrow, J. E., Dobowsky, S., and Gibson, J. S., 1985, Time optimal control of robotic manipulators along specified paths, The International Journal of Robotics Research, 4 (3), 495-499.CrossRefGoogle Scholar
  6. Courant, R., and Robbins, H., 1941, What is Mathematics?, Oxford University Press, London.Google Scholar
  7. Fahimi, F., 2009, Autonomous Robots: Mdeling, Path Planing, and Control, Springer, New York.Google Scholar
  8. Fotouhi, C. R., and Szyszkowski W., 1998, An algorithm for time optimal control problems, Transaction of the ASME, Journal of Dynamic Systems, Measurements, and Control, 120, 414-418.CrossRefGoogle Scholar
  9. Fu, K. S., Gonzales, R. C., and Lee, C. S. G., 1987, Robotics, Control, Sensing, Vision and Intelligence, McGraw-Hill, New York.Google Scholar
  10. Gamkrelidze, R. V., 1958, The theory of time optimal processes in linear systems, Izvestiya Akademii Nauk SSSR, 22, 449-474.MATHMathSciNetGoogle Scholar
  11. Garg, D. P., 1990, The new time optimal motion control of robotic manipulators, The Franklin Institute, 327 (5), 785-804.MATHCrossRefGoogle Scholar
  12. Hart P. E., Nilson N. J., and Raphael B., 1968, A formal basis for heuristic determination of minimum cost path, IEEE Transaction Man, System & Cybernetics, 4, 100-107.CrossRefGoogle Scholar
  13. Kahn, M. E., and Roth B., 1971, The near minimum time control of open loop articulated kinematic chain, Transaction of the ASME, Journal of Dynamic Systems, Measurements, and Control, 93, 164-172.Google Scholar
  14. Kim B. K., and Shin K. G., 1985, Suboptimal control of industrial manipulators with weighted minimum time-fuel criterion, IEEE Transactions on Automatic Control, 30 (1), 1-10.MATHCrossRefMathSciNetGoogle Scholar
  15. Krotov, V. F., 1996, Global Methods in Optimal Control Theory, Marcel Decker, Inc.Google Scholar
  16. Golnaraghi, F., and Kuo, B. C., 2009, Automatic Control Systems, John Wiley & Sons, New York.Google Scholar
  17. Lee, E. B., and Markus, L., 1961, Optimal Control for Nonlinear Processes, Archive for Rational Mechanics and Analysis, 8, 36-58.MATHCrossRefMathSciNetGoogle Scholar
  18. Lee, H. W. J., Teo, K. L., Rehbock, V., and Jennings, L. S., 1997, Control parameterization enhancing technique for time optimal control problems, Dynamic Systems and Applications, 6, 243-262.MATHMathSciNetGoogle Scholar
  19. Lewis, F. L., and Syrmos, V. L., 1995, Optimal Control, John Wiley & Sons, New York.Google Scholar
  20. Meier E. B., and Bryson A. E., 1990, Efficient algorithm for time optimal control of a two-link manipulator, Journal of Guidance, Control and Dynamics, 13 (5), 859-866.MATHCrossRefMathSciNetGoogle Scholar
  21. Mita T., Hyon, S. H., and Nam, T. K., 2001, Analytical time optimal control solution for a two link planar acrobat with initial angular momentum, IEEE Transactions on Robotics and Automation, 17 (3), 361-366.CrossRefGoogle Scholar
  22. Nakamura, Y., 1991, Advanced Robotics: Redundancy and Optimization, Addison Wesley, New York.Google Scholar
  23. Nakhaie Jazar G., and Naghshinehpour A., 2005, Time optimal control algorithm for multi-body dynamical systems, IMechE Part K: Journal of Multi-Body Dynamics, 219 (3), 225-236.Google Scholar
  24. Pinch E. R., 1993, Optimal Control and the Calculus of Variations, Oxford University Press, New York.MATHGoogle Scholar
  25. Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., and Mishchenko, E. F., 1962, The Mathematical Theory of Optimal Processes, John Wiley & Sons, New York.MATHGoogle Scholar
  26. Roxin, E., 1962, The existence of optimal controls, Michigan Mathematical Journal, 9, 109-119.MATHCrossRefMathSciNetGoogle Scholar
  27. Shin K. G., and McKay N. D., 1985, Minimum time control of a robotic manipulator with geometric path constraints, IEEE Transaction Automatic Control, 30 (6), 531-541.MATHCrossRefGoogle Scholar
  28. Shin K. G., and McKay N. D., 1986, Selection of near minimum time geometric paths for robotic manipulators, IEEE Transaction Automatic Control, 31 (6), 501-511.MATHCrossRefGoogle Scholar
  29. Skowronski, J. M., 1986, Control Dynamics of Robotic Manipulator, Academic Press Inc., U.S.Google Scholar
  30. Slotine, J. J. E., and Yang, H. S., 1989, Improving the efficiency of time optimal path following algorithms, IEEE Trans. Robotics Automation, 5 (1), 118-124.CrossRefGoogle Scholar
  31. Spong, M. W., Thorp, J. S., and Kleinwaks, J., M., 1986, The control of robot manipulators with bounded input, IEEE Journal of Automatic Control, 31 (6), 483-490.MATHCrossRefGoogle Scholar
  32. Sundar, S., and Shiller, Z., 1996, A generalized sufficient condition for time optimal control, Transaction of the ASME, Journal of Dynamic Systems, Measurements, and Control, 118 (2), 393-396.MATHCrossRefGoogle Scholar
  33. Takegaki, M., and Arimoto, S., 1981, A new feedback method for dynamic control of manipulators, Transaction of the ASME, Journal of Dynamic Systems, Measurements, and Control, 102, 119-125.CrossRefGoogle Scholar
  34. Vincent T. L., and Grantham W. J., 1997, Nonlinear and Optimal Control Systems, John Wiley & Sons, New York.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Aerospace, Mechanical, and Manufacturing EngineeringRMIT UniversityMelbourneAustralia

Personalised recommendations