Polarization Rotation in Ring Resonators

Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 156)

Abstract

Densely integrated photonic devices require high-index contrast waveguides supporting small bending radii with negligible loss. However, when optical waveguides are tightly curved, polarization rotation (PR) effects can arise. In this chapter, PR in bent waveguides is theoretically and numerically investigated and its dependence on the main waveguide parameters is derived. It is shown that the efficiency of PR linearly increases with the refractive index contrast, is strongly inhibited by birefringence, and vanishes in the case of waveguides with a refractive index profile symmetrical in the direction orthogonal to the plane of the bend. In resonant structures PR is strongly enhanced and can severely distort the frequency response of ring resonators (RRs). Cavity-enhanced PR in RRs is discussed, and design rules to mitigate or enhance PR are provided. The detrimental effects due to undesired PR on the behavior of common architectures including RRs are shown. Examples of devices exploiting cavity-enhanced polarization rotation to implement highly efficient polarization rotators are presented.

Keywords

Microwave Attenuation Coupler Oxynitride 

References

  1. 1.
    Fukazawa, T., Ohno, F., et al. Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides. Jpn. J. Appl. Phys. 43, 673-675 (2004)CrossRefGoogle Scholar
  2. 2.
    Bogaerts, W., Baets, et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightwave Technol. 23, 401–412 (2005)CrossRefGoogle Scholar
  3. 3.
    Tsuchizawa, T., Yamada, K., et al. Microphotonics devices based on silicon microfabrication technology. IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005)CrossRefGoogle Scholar
  4. 4.
    Xia, F., Sekaric, L., et al. Ultracompact optical buffers on a silicon chip. Nature Photon. 1, 65–71 (2006)CrossRefGoogle Scholar
  5. 5.
    Xu, Q., Fattal, D., et al. Silicon microring resonators with 1.5-μm radius. Opt. Express 16, 4309–4315 (2008)CrossRefGoogle Scholar
  6. 6.
    van Dam, C., Spiekman, L.H., et al. Novel compact polarization converters based on ultra short bends. IEEE Photon. Technol. Lett. 8, 1346–1348 (1996).CrossRefGoogle Scholar
  7. 7.
    Sakai, A., Fukazawa, T., et al. Estimation of polarization crosstalk at a micro-bend in Si-photonic wire waveguide. J. Lightwave Technol. 22, 520–525 (2004)CrossRefGoogle Scholar
  8. 8.
    Obayya, S.S.A., Rahman, B.M.A., et al. Beam propagation modeling of polarization rotation in deeply etched semiconductor bent waveguides. IEEE Photon. Technol. Lett. 13, 681–683 (2001)CrossRefGoogle Scholar
  9. 9.
    Melloni, A, Morichetti, F., et al. Polarization conversion in ring resonator phase shifters. Opt. Lett. 29, 2785–2787 (2004)CrossRefGoogle Scholar
  10. 10.
    Morichetti, F., Melloni, A., et al. Effects of polarization rotation in optical ring-resonator-based devices. J. Lightwave Technol. 24, 573–585 (2006)CrossRefGoogle Scholar
  11. 11.
    Marcatili, E.A.J. Bends in optical dielectric guides. Bell Syst. Tech. J. 48, 2103–2132 (1969)Google Scholar
  12. 12.
    Obayya, S.S.A., Somasiri, N., et al. Full vectorial finite element modeling of novel polarization rotators. Opt. Quantum Electron. 35, 297–312 (2003)CrossRefGoogle Scholar
  13. 13.
    Little B.E., Chu, S.T. Theory of polarization rotation and conversion in vertically coupled microresonators. IEEE Photon. Technol. Lett. 12, 401–403 (2000)CrossRefGoogle Scholar
  14. 14.
    Lui, W.W., Hirono, T., et al. Polarization rotation in semiconductor bending waveguides: a coupled mode theory formulation. J. Lightwave Technol. 16, 929–936 (1998)CrossRefGoogle Scholar
  15. 15.
    Yeung, C., Rozzi, T., et al. Crosspolarization coupling in curved dielectric rib waveguides. Inst. Elect. Eng. Proc. - Pt. J 135, 281–284 (1988)Google Scholar
  16. 16.
    Kwon, M.-S. Comments on ‘Effects of polarization rotation in optical ring-resonator-based devices’. J. Lightwave Technol. 24, 5119–5119 (2006)Google Scholar
  17. 17.
    Melloni, A., Carniel, F., et al. Determination of bend mode characteristic in dielectric waveguides. IEEE J. Lightwave Technol. 19, 571–577 (2001)CrossRefGoogle Scholar
  18. 18.
    Lenz, D., Erni, D., et al. Quasi-analytic formalism for mode characteristics in highly overmoded rectangular dielectric waveguide bends. J. Opt. Soc. Am. A 22, 1968–1975 (2005)CrossRefGoogle Scholar
  19. 19.
    Cusmai, G., Morichetti, F., et al. Circuit-oriented modelling of ring-resonators. Opt. Quantum Electron. 37, 343–358 (2005)CrossRefGoogle Scholar
  20. 20.
    Heiblum M., Harris, J.H. Analysis of curved optical waveguides by conformal transformation. IEEE J. Quantum Electron. 11, 75–83 (1975)CrossRefGoogle Scholar
  21. 21.
    Stoffer, R., Hiremath, K.R., et al. Cylindrical integrated optical microresonators: modeling by 3-D vectorial coupled mode theory. Opt. Comm. 256, 46–67 (2005)CrossRefGoogle Scholar
  22. 22.
    Madsen, C.K., Zhao, J.H. Optical filter design and analysis: a signal processing approach. John Wiley, New York (1999)CrossRefGoogle Scholar
  23. 23.
    Melloni, A., Costa, R., et al. Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems. Opt. Lett. 28, 1567–1569 (2003)CrossRefGoogle Scholar
  24. 24.
    Little, B.E., Chu, S.T., et al. Microring resonator channel dropping filters. J. Lightw. Technol. 15, 998–1005 (1997)CrossRefGoogle Scholar
  25. 25.
    Little, B.E., Chu, S.T., et al. Very high-order microring resonator filters for WDM applications. IEEE Photon. Technol. Lett. 16, 2263–2265, (2004)CrossRefGoogle Scholar
  26. 26.
    Bianucci, P., Fietz, C.R., et al. Whispering gallery mode microresonators as polarization converters. Opt. Lett. 32, 2224–2226 (2007)CrossRefGoogle Scholar
  27. 27.
    Morichetti, F., Melloni, A. Polarization converters based on ring-resonator phase-shifters. IEEE Photon. Technol. Lett. 18, 923–925 (2006)CrossRefGoogle Scholar
  28. 28.
    Morichetti, F., Melloni, A., et al. Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line. Opt. Expr. 16, 8395–8405 (2008)CrossRefGoogle Scholar
  29. 29.
    Yariv, A., Xu, Y., et al. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711–713 (1999)CrossRefGoogle Scholar
  30. 30.
    Melloni, A., Morichetti, et al. Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures. Opt. Quantum Electron. 35, 365–379 (2003)CrossRefGoogle Scholar
  31. 31.
    Melloni A., Martinelli, M. Synthesis of direct-coupled-resonators bandpass filters for WDM systems. J. Lightwave Technol. 20, 296–303 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag US 2010

Authors and Affiliations

  1. 1.POLICOM - Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly
  2. 2.Fondazione Politecnico di MilanoMilanoItaly

Personalised recommendations