Skip to main content

MEMS-Tuned Microresonators

  • Chapter
  • First Online:
Photonic Microresonator Research and Applications

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 156))

  • 2329 Accesses

Abstract

Micro-electro-mechanical systems (MEMS) is a key enabling technology to realize scalable and reconfigurable optical components. Since Peterson (1982) demonstrated the first MEMS scanning mirror, many free-space optical MEMS including digital micromirror devices (DMD), micromirror switches, and optical scanners have been accomplished. In guided-wave optics, MEMS have demonstrated the ability for controlling evanescent and butt coupling between waveguides. This chapter investigates the integration of MEMS actuators with optical microresonators and introduces a new family of tunable photonic devices.

Most tunable microresonators rely on electro-optics, thermo-optics, free-carrier dispersion or gain/loss control to vary the index of refraction, which can be classified as “material modulation.” For MEMS-tuned microresonators, however, tunability comes from the structure or the configuration of microresonators modified by mechanical actuation, which is termed as “configuration modulation.” Using MEMS to alter the configuration of microresonators has various advantages. First, the functionality of photonic devices based on the resonators is adjustable or tunable. Second, unintentional variation of spacing between components after fabrication may be ameliorated by fine-tuning the configuration.

The content of this chapter is organized as follows. Section 1 introduces control factors to implement tunable microresonators and the model of corresponding optical transfer functions. A summary of the state-of-the-art tuning mechanisms is also given. Section 2 demonstrates MEMS variable couplers for tunable microdisk resonators. Several functions, including tunable coupling regimes, tunable slow light, dynamic add-drop filters, and dynamic bandwidth (BW) allocation, are presented. Section 3 shows that the quality factor of microresonators can be reduced by attaching an absorber through MEMS actuators. A wavelength switch is demonstrated. Section 4 gives an example of that the resonant wavelength tuned through varying the cavity length of microresonators. Based on this idea, tunable filters and lasers are accomplished by incorporating MEMS actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Little, B.E., Chu, S.T., et al. Microring resonator channel dropping filters. J. Lightw. Technol. 15, 998–1005 (1997)

    Article  Google Scholar 

  2. Chu, S.T., Little, B.E., et al. Second-order filter response from parallel coupled glass microring resonators. IEEE Photon. Technol. Lett. 11, 1426–1428 (1999)

    Article  Google Scholar 

  3. Little, B.E., Chu, S.T., et al. Microring resonator arrays for VLSI photonics. IEEE Photon. Technol. Lett. 12, 323–325 (2000)

    Article  Google Scholar 

  4. Lenz, G., Eggleton, B.J., et al. Dispersive properties of optical filters for WDM systems. IEEE J. Quant. Electron. 34, 1390–1402 (1998)

    Article  Google Scholar 

  5. Xu, Q., Manipatruni, S., et al. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt. Exp. 15, 430–436 (2007)

    Article  Google Scholar 

  6. Sadagopan, T., Choi, S.J., et al. Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation. IEEE Photon. Technol. Lett. 17, 414–416 (2005)

    Article  Google Scholar 

  7. Djordjev, K., Choi, S.J., et al. Gain trimming of the resonant characteristics in vertically coupled InP microdisk switches. Appl. Phys. Lett. 80, 3467–3469 (2002)

    Article  Google Scholar 

  8. Djordjev, K., Choi, S.J., et al. Vertically coupled InP microdisk switching devices with electroabsorptive active regions. IEEE Photon. Technol. Lett. 14, 1115–1117 (2002)

    Article  Google Scholar 

  9. Liu, A., Jones, R., et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 427, 615–618 (2004)

    Article  Google Scholar 

  10. Rabiei, P., Steier, W.H., et al. Polymer micro-ring filters and modulators. IEEE J. Lightw. Technol. 20, 1968–1975 (2002)

    Article  Google Scholar 

  11. Djordjev, K., Choi, S.J., et al. Microdisk tunable resonant filters and switches. IEEE Photon. Technol. Lett. 14, 828–830 (2002)

    Article  Google Scholar 

  12. Madsen, C.K., Walker, J.A., et al. Tunable dispersion compensating MEMS all-pass filter. IEEE Photon. Technol. Lett. 12, 651–653 (2000)

    Article  Google Scholar 

  13. Lee, M.C.M., Wu, M.C. MEMS-actuated microdisk resonators with variable power coupling ratios. IEEE Photon. Technol. Lett. 17, 1034–1036 (2005)

    Article  Google Scholar 

  14. Lee, M.C.M., Wu, M.C. Tunable coupling regimes of silicon microdisk resonators using MEMS actuators. Opt. Exp. 14, 4703–4712 (2006)

    Article  Google Scholar 

  15. Lee, M.C.M., Wu, M.C. Thermal annealing in hydrogen for 3D profile transformation on silicon-on-insulator and sidewall roughness reduction. J. Microelectromech. Syst. 15, 338–343 (2006)

    Article  Google Scholar 

  16. Yao, J., Leuenberger, D., et al. Silicon microtoroidal resonators with integrated MEMS tunable coupler. IEEE J. Select. Topics Quant. Electron. 13, 202–208 (2007)

    Article  Google Scholar 

  17. Tucker, R.S., Ku, P.C., et al. Slow-light optical buffers: Capabilities and fundamental limitations. J. Lightw. Technol. 23, 4046–4066 (2005)

    Article  Google Scholar 

  18. Hau, L.V., et al. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594 (1999)

    Article  Google Scholar 

  19. Bigelow, M.S., Lepeshkin, N.N., et al. Superluminal and slow light propagation in a room-temperature solid. Science 301, 200–202 (2003)

    Article  Google Scholar 

  20. J. HegartyEffects of hole burning on pulse-propagation in GaAs quantum wells. Phys. Rev. B 25, 4324–4326 (1982)

    Google Scholar 

  21. Heebner, J.E., Chak, P., et al. Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. J. Opt. Soc. Am. B; Opt. Phys. 21, 1818–1832 (2004)

    Article  Google Scholar 

  22. Zhao, X., Palinginis, P., et al. Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier. Opt. Exp. 13, 7899–7904 (2005)

    Article  Google Scholar 

  23. Sharping, J.E., Okawachi, Y., et al. All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion. Opt. Express 13, 7872–7877 (2005)

    Article  Google Scholar 

  24. Pereira, S., Sipe, J.E., et al. Gap solitons in a two-channel microresonator structure. Opt. Lett. 27, 536–538 (2002)

    Article  Google Scholar 

  25. Poon, J.K.S., Zhu, L., et al. Transmission and group delay of microring coupled-resonator optical waveguides. Opt. Lett. 31, 456–458 (2006)

    Article  Google Scholar 

  26. Notomi, M., Kuramochi, E., et al. Large-scale arrays of ultrahigh-Q coupled nanocavities. Nature Photon. 2, 741–747 (2008)

    Article  Google Scholar 

  27. Chu, S.T., Little, B.E., et al. Eight-channel add-drop filter using vertically coupled microring resonators over a cross grid. IEEE Photon. Technol. Lett. 11, 691–693 (1999)

    Article  Google Scholar 

  28. Lee, M.C.M., Wu, M.C. Variable bandwidth of dynamic add-drop filters based on coupling-controlled microdisk resonators. Opt. Lett. 31, 2444–2446 (2006)

    Article  Google Scholar 

  29. Zhang, B., Leuenberger, D., et al. Experimental demonstration of dynamic bandwidth allocation using a MEMS-actuated bandwidth-tunable microdisk resonator filter. IEEE Photon. Technol. Lett. 19, 1508–1510 (2007)

    Article  Google Scholar 

  30. Nielson, G.N., Seneviratne, D., et al. Integrated wavelength-selective optical MEMS switching using ring resonator filters. IEEE Photon. Technol. Lett. 17, 1190–1192 (2005)

    Article  Google Scholar 

  31. Irmer, S., Daleiden, J., et al. Ultralow biased widely continuously tunable Fabry-Perot filter. IEEE Photon. Technol. Lett. 15, 434–436 (2003)

    Article  Google Scholar 

  32. Aziz, M., Meissner, P. et al. WDM system integration of micromachined tunable two-chip Fabry-Perot filters. Opt. Comm. 208, 61–68 (2002)

    Article  Google Scholar 

  33. Correia, J.H., Bartek, M., et al. Bulk-micromachined tunable Fabry-Perot microinterferometer for the visible spectral range. Sensor Actuators A 76, 191–196 (1999)

    Article  Google Scholar 

  34. Peerlings, J., Dehé, A., et al. Long resonator micromachined tunable GaAs-AlAs Fabry-Perot filter. IEEE Photon. Technol. Lett. 9, 1235–1237 (1997)

    Article  Google Scholar 

  35. Spisser, A., Ledantec, R., et al Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications. IEEE Photon. Technol. Lett. 10, 1259–1261 (1998)

    Article  Google Scholar 

  36. Vail, E.C., Li, G.S., et al. High performance and novel effects of micromechanical tunable vertical-cavity lasers. IEEE J. Select. Topics Quant. Electron. 3, 691–697 (1997)

    Article  Google Scholar 

  37. Huang, M.C.Y., Zhou, Y., et al. Nano electro-mechanical optoelectronic tunable VCSEL. Opt. Exp. 15, 1222–1227 (2007)

    Article  Google Scholar 

  38. Huang, M.C.Y., Zhou, Y., et al. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nature Photon. 1, 119–122 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Prof. A. Uskov from the P.N. Lebedev Physical Institute, Moscow, for helpful discussions and the support of DARPA for the work on tunable slow light. Furthermore they would like to acknowledge the contribution by Dr. B. Zhang and Prof. A.E. Willner from USC in the experiment of bandwidth-tunable filters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Chang M. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag US

About this chapter

Cite this chapter

Lee, MC.M., Wu, M.C., Leuenberger, D. (2010). MEMS-Tuned Microresonators. In: Chremmos, I., Schwelb, O., Uzunoglu, N. (eds) Photonic Microresonator Research and Applications. Springer Series in Optical Sciences, vol 156. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1744-7_18

Download citation

Publish with us

Policies and ethics