Skip to main content

High-Q Photonic Crystal Microcavities

  • Chapter
  • First Online:
Photonic Microresonator Research and Applications

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 156))

  • 2370 Accesses

Abstract

Over the past few years, much work has been devoted to the study of microcavities in photonic crystals (PCs). High-quality factor (Q) PC microcavities exhibit attractive properties since they can confine light in wavelength-scale dimensions, making them potentially useful not only for photonic integration but also in quantum optics. Most of the high-Q PC microcavities are realized in slabs (PCSs), which are two-dimensional (2D) PCs with a high refractive index core layer providing light confinement in the third dimension. The key to design high-Q cavities is to reduce the radiation losses, i.e., to minimize the spatial Fourier components above the light line of the PCS. This chapter will focus on high-Q PC microcavity, including design rules, characterization methods, device demonstrations, and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Srinivasan, K., Painter, O. Momentum space design of high-Q photonic crystal optical cavities. Opt. Express 10, 670–684 (2002)

    Article  Google Scholar 

  2. Srinivasan, K., Painter, O. Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals. Opt. Express 11, 579–593 (2003)

    Article  Google Scholar 

  3. Vučković, J., Lončar, M. et al. Optimization of the Q factor in photonic crystal microcavities. IEEE J. Quant. Electron. 38, 850–856 (2002)

    Article  Google Scholar 

  4. Tanabe, T., Notomi, M., et al. Measurement of an ultra-high-Q photonic crystal microcavity using a single-side-band frequency modulator. Electron. Lett. 43, 187–188 (2007)

    Article  Google Scholar 

  5. Tanabe, T., Notomi, M., et al. Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities. Opt. Express 15, 7826–7839 (2007)

    Article  Google Scholar 

  6. Armani, D., Kippenberg, T., et al. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003)

    Article  Google Scholar 

  7. Foresi, J.S., Villeneuve, P.R., et al. Photonic-bandgap microcavities in optical waveguides. Nature 390, 143–145 (1997)

    Article  Google Scholar 

  8. Zain, A.R.M., Johnson, N.P., et al. Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in SOI. Opt. Express 16, 12084–12089 (2008)

    Article  Google Scholar 

  9. Deotare, P.B., McCutcheon, M.W., et al. High quality factor photonic crystal nanobeam cavities. Appl. Phys. Lett. 94, 121106 (2009)

    Article  Google Scholar 

  10. Akahane, Y., Asano, T., et al. High-Q photonic microcavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003)

    Article  Google Scholar 

  11. Akahane, Y., Asano, T., et al. Fine-tuned high-Q photonic-crystal micro-cavity. Opt. Express 13, 1202–1214 (2005)

    Article  Google Scholar 

  12. Ryu, H.Y., Notomi, M., et al. High quality-factor and small mode-volume hexapole modes in photonic crystal slab nano-cavities. Appl. Phys. Lett. 83, 4294–4296 (2003)

    Article  Google Scholar 

  13. Kim, G.H., Lee, Y.-H., et al. Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode. Opt. Express 12, 6624–6631 (2004)

    Article  Google Scholar 

  14. Tanabe, T., Shinya, A., et al. Single point defect photonic crystal microcavity with ultrahigh quality factor achieved by using hexapole mode. Appl. Phys. Lett. 91, 021110 (2007)

    Article  Google Scholar 

  15. Ryu, H.-Y., Notomi, M., et al. High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity. Opt. Express 12, 1708–1719 (2004)

    Article  Google Scholar 

  16. Zhang, Z., Qiu, M. Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs. Opt. Express 12, 3988–3995 (2004)

    Article  Google Scholar 

  17. Song, B.-S., Noda, S., et al. Ultra-high-Q photonic double-heterostructure microcavity. Nature Mater. 4, 207–210 (2005)

    Article  Google Scholar 

  18. Asano, T., Song, B.-S., et al. Analysis of the experimental Q factors (∼1 million) of photonic crystal nanocavities. Opt. Express 14, 1996–2002 (2006)

    Article  Google Scholar 

  19. Takahashi, Y., Hagino, H., et al. High-Q nanocavity with a 2-ns photon lifetime. Opt. Express 15, 17206–17213 (2007)

    Article  Google Scholar 

  20. Tanaka, Y., Asano, T., et al. Design of photonic crystal nanocavity with Q-factor of ∼109. J. Lightwave Technol. 26, 1532–1539 (2008)

    Article  Google Scholar 

  21. Kuramochi, E., Notomi, M., et al. Ultrahigh-Q photonic crystal nano-cavities realized by the local width modulation of a line defect. Appl. Phys. Lett. 88, 041112 (2006)

    Article  Google Scholar 

  22. Notomi, M., Tanabe, T., et al. Nonlinear and adiabatic control of high-Q photonic crystal nanocavities. Opt. Express 15, 17458–17481 (2007)

    Article  Google Scholar 

  23. Kuramochi, E., Taniyama, H., et al. Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers. Appl. Phys. Lett. 93, 111112 (2008)

    Article  Google Scholar 

  24. Xiao, S., Qiu, M. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals. J. Opt. Soc. Am. B, 24, 1225–1229 (2007)

    Article  Google Scholar 

  25. Zhang, Z., Dainese, M., et al. Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure. Appl. Phys. Lett. 90, 041108 (2007)

    Article  Google Scholar 

  26. Jing, W., Min, Q. High-Q optical filter based on photonic crystal surface-mode microcavity. 2nd IEEE LEOS Winter Topicals, WTM 2009, art. no. 4771635, pp. 22–23

    Google Scholar 

  27. Tanabe, T., Notomi, M., et al. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal microcavity. Nat. Photonics 1, 49–52 (2007)

    Article  Google Scholar 

  28. Tanabe, T., Notomi, M., et al. Dynamic release of trapped light from an ultrahigh-Q microcavity via adiabatic frequency tuning. Phys. Rev. Lett. 102, 043907 (2009)

    Article  Google Scholar 

  29. Notomi, M., Mitsugi, S. Wavelength conversion via dynamic refractive index tuning of a cavity. Phys. Rev. A 73, 051803 (2006)

    Article  Google Scholar 

  30. Tanaka, Y., Upham, J., et al. Dynamic control of the Q factors in a photonic crystal microcavity. Nature Mater. 6, 862–865 (2007)

    Article  Google Scholar 

  31. Song, B.-S., Asano, T., et al. Role of interfaces in heterophotonic crystals for manipulation of photons. Phys. Rev. B 71, 195101 (2005)

    Article  Google Scholar 

  32. O’Brien D., Settle M. D., et al. Coupled photonic crystal heterostructure nanocavities. Opt. Express 15, 1228–1233 (2007)

    Google Scholar 

  33. Notomi, M., Kuramochi, E., et al. Large-scale arrays of ultrahigh-Q coupled nanocavities. Nature Photon. 2, 741–747 (2008)

    Article  Google Scholar 

  34. Xia, F.N., Sekaric, L., et al. Ultracompact optical buffers on a silicon chip. Nature Photon. 1, 65–71 (2007)

    Article  Google Scholar 

  35. Settle, M.D., Engelen, R.J.P., et al. Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth. Opt. Express 15, 219–226 (2007)

    Article  Google Scholar 

  36. Baba, T., Kawasaki, T., et al. Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide. Opt. Express 16, 9245–9253 (2008)

    Article  Google Scholar 

  37. Almeida, V.R., Barrios, C.A., et al. All-optical control of light in a silicon chip. Nature 431, 1081–1084 (2004)

    Article  Google Scholar 

  38. Almeida, V.R., Barrios, C.A., et al. All-optical switching on a silicon chip. Opt. Lett. 29, 2867–2869 (2004)

    Article  Google Scholar 

  39. Tanabe, T., Nishiguchi, K., et al. Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities. Appl. Phys. Lett. 90, 031115 (2007)

    Article  Google Scholar 

  40. Tanabe, T., Notomi, M., et al. All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl. Phys. Lett. 87, 151112 (2005)

    Article  Google Scholar 

  41. Chutinan, A., Mochizuki, M., et al. Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs. Appl. Phys. Lett. 79, 2690–2692 (2001)

    Article  Google Scholar 

  42. Min, B.-K., Kim, J.-E., et al. High-efficiency surface-emitting channel drop filters in two-dimensional photonic crystal slabs. Appl. Phys. Lett. 86, 11106/1–3 (2005)

    Google Scholar 

  43. Qiu, M., Jaskorzynska, B. A design of a channel drop filter in a two-dimensional triangular photonic crystal. Appl. Phys. Lett. 83, 1074–1076 (2003)

    Article  Google Scholar 

  44. Qiu, M. Ultra-compact optical filter in two-dimensional photonic crystal. Electron. Lett. 40, 539–540 (2004)

    Article  Google Scholar 

  45. Manolatou, C., Khan, M.J., et al. Coupling of modes analysis of resonant channel add-drop filters. IEEE J. Quant. Electron. 35, 1322–1331 (1999)

    Article  Google Scholar 

  46. Zhang, Z., Qiu, M. Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs. Opt. Express 13, 2596–2604 (2005)

    Article  Google Scholar 

  47. Song, B.-S., Asano, T., et al. Transmission and reflection characteristics of in-plane hetero-photonic crystals. Appl. Phys. Lett. 85, 4591–4593 (2004)

    Article  Google Scholar 

  48. Takano, H., Song, B.-S., et al. Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal. Appl. Phys. Lett. 86, 241101 (2005)

    Article  Google Scholar 

  49. Takano, H., Song, B.-S., et al. Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal. Opt. Express 14, 3491–3496 (2006)

    Article  Google Scholar 

  50. Weidner, E., Combrí, S. Achievement of ultrahigh quality factors in GaAs photonic crystal membrane micro-cavity. Appl. Phys. Lett. 89, 221104 (2006)

    Article  Google Scholar 

  51. Park, H.-G., Kim, S.-H., et al. Electrically driven single-cell photonic crystal laser. Science 305, 1444–1447 (2004)

    Article  Google Scholar 

  52. Nozaki, K., Kita, S., et al. Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Opt. Express 15, 7506–7514 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag US

About this chapter

Cite this chapter

Li, Q., Qiu, M. (2010). High-Q Photonic Crystal Microcavities. In: Chremmos, I., Schwelb, O., Uzunoglu, N. (eds) Photonic Microresonator Research and Applications. Springer Series in Optical Sciences, vol 156. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1744-7_14

Download citation

Publish with us

Policies and ethics