Photonic Crystal Ring Resonators and Ring Resonator Circuits

  • Weidong Zhou
  • Zexuan Qiang
  • Richard A. Soref
Part of the Springer Series in Optical Sciences book series (SSOS, volume 156)


We present the characteristics and applications of photonic crystal ring resonators (PCRR). Photonic crystal confinement can achieve very high cavity quality factor ring resonators. Diffraction-limited ultra-compact PCRRs are feasible due to the absence of size-dependent losses. The flexible modal properties can offer flexible design and integration schemes for either forward or backward propagating add-drop filters based on single- or dual-ring PCRRs. Hybrid-confined PCRRs also show great potential and useful characteristics. Furthermore, we report a few device and circuit configurations based on PCRRs for high-speed modulators, filters, delay lines, etc. Such PCRR structures can potentially provide a good alternative to the traditional microring resonators, as one of the key contributors to the emerging low-power nanophotonics technology.


Ring resonators Photonic crystal Photonic bandgap Mode superposition Add-drop filter 



The authors appreciate helpful discussions with Drs. Z. Ma, Z. Sheng, and K. Zou. The authors also acknowledge the help and support of Dr. Gernot Pomrenke. This work was supported in part by the US Air Force Office of Scientific Research under Grant 07-SC-AFOSR-1004 and in part by the National Science Foundation under Grant DMI-0625728.


  1. 1.
    Bowers, J.E., Newton, S.A., et al. Filter response of single-mode fibre recirculating delay lines. Electron. Lett. 18, 110–111 (1982)CrossRefGoogle Scholar
  2. 2.
    Madsen, C.K., Lenz, G. Optical all-pass filters for phase response design with applications for dispersion compensation. IEEE Photon. Technol. Lett. 10, 994–996 (1998)CrossRefGoogle Scholar
  3. 3.
    Chao, C.Y., Fung, W., et al. Polymer microring resonators for biochemical sensing applications. IEEE J. Sel. Top. Quant. Electron. 12, 134–142 (2006)CrossRefGoogle Scholar
  4. 4.
    Xu, Q., Manipatruni, S., et al. 12.5 Gbit/s carrier-injection-based silicon microring silicon modulators. Opt. Express 15, 430–436 (2007)CrossRefGoogle Scholar
  5. 5.
    Little, B.E., Haus, H.A., et al. Wavelength switching and routing using absorption and resonance. IEEE Photon. Technol. Lett. 10, 816–818 (1998)CrossRefGoogle Scholar
  6. 6.
    Rabus, D.G., Bian, Z. et al. A GaInAsP-InP double-ring resonator coupled laser. IEEE Photon. Technol. Lett. 17, 1770–1772 (1995)CrossRefGoogle Scholar
  7. 7.
    Renner, J., Worschech, L., et al. Glass supported ZnSe microring strongly coupled to a single CdSe quantum dot. Appl. Phys. Lett. 93, 151109 (2008)CrossRefGoogle Scholar
  8. 8.
    Stokes, L.F., Chodorow, M., et al. All-single-mode fiber resonator. Opt. Lett. 7, 288–290 (1982)CrossRefGoogle Scholar
  9. 9.
    Little, B.E., Chu, S.T., et al. Very high-order microring resonator filters for WDM applications. IEEE Photon. Technol. Lett. 16, 2263–2265 (2004)CrossRefGoogle Scholar
  10. 10.
    Leinse, A., Diemeer, M.B.J., et al. A novel high-speed polymeric EO modulator based on a combination of a microring resonator and an MZI. IEEE Photon. Technol. Lett. 17, 2074–2076 (2005)CrossRefGoogle Scholar
  11. 11.
    Guarino, A., Poberaj, G., et al. Electro-optically tunable microring resonators in lithium niobate. Nature Photonics 1, 407–410 (2007)CrossRefGoogle Scholar
  12. 12.
    Blom, F.C., Dijk, D.R.v., et al. Experimental study of integrated-optics micro-cavity resonators: Toward an all-optical switching device. Appl. Phys. Lett. 71, 747–749 (1997)CrossRefGoogle Scholar
  13. 13.
    Melloni, A., Costa, R., et al. Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems. Opt. Lett. 28, 1567–1569 (2003)CrossRefGoogle Scholar
  14. 14.
    Almeida, V.R., Barrios, C.A., et al. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004)CrossRefGoogle Scholar
  15. 15.
    Yang, Z., Chak, P., et al.: Enhanced second-harmonic generation in AlGaAs microring resonators. Opt. Lett. 32, 826–828 (2007)CrossRefGoogle Scholar
  16. 16.
    Absil, P.P., Hryniewicz, J.V., et al. Wavelength conversion in GaAs micro-ring resonators. Opt. Lett. 25, 554–556 (2000)CrossRefGoogle Scholar
  17. 17.
    Little, B.E., Foresi, J., et al. Ultra-compact Si-SiO2 microring resonator optical channel dropping filters. IEEE Photon. Technol. Lett. 10, 549–551 (1998)CrossRefGoogle Scholar
  18. 18.
    Soref, R., Bennett, B. Electrooptical effects in silicon. IEEE J. Quant. Electron. 23, 123–129 (1987)CrossRefGoogle Scholar
  19. 19.
    McLauchlan, K.K., Dunham, S.T. Analysis of a compact modulator incorporating a hybrid silicon/electrooptic polymer waveguide. IEEE J. Sel. Top. Quant. Electron. 12, 1455–1460 (2006)CrossRefGoogle Scholar
  20. 20.
    Chen, J.C., Haus, H.A., et al. Optical filters from photonic band gap air bridges. IEEE J. Lightwave Technol. 14, 2575–2580 (1996)CrossRefGoogle Scholar
  21. 21.
    Qiang, Z., Yang, H., et al. Fano filter modal analysis based on transferred silicon nanomembranes on flexible substrates. Appl. Phys. Lett. 93, 061106 (2008)CrossRefGoogle Scholar
  22. 22.
    Zhao, D., Zhou, C., et al. Lasing cavities and ultra-fast switch based on self-collimation of photonic crystal. J. Phys. D: Appl. Phys. 41, 115108 (2008)CrossRefGoogle Scholar
  23. 23.
    Kosaka, H., Kawashima, T., et al. Superprism phenomena in photonic crystals. Phys. Rev. B. 58, R10096 (1998)CrossRefGoogle Scholar
  24. 24.
    Fan, S., Villeneuve, P.R., et al. Channel drop filters in photonic crystals. Opt. Express 3, 4–11 (1998)CrossRefGoogle Scholar
  25. 25.
    Notomi, M., Shinya, A., et al. Waveguides, resonators and their coupled elements in photonic crystal slabs. Opt. Express 12, 1551–1561 (2004)CrossRefGoogle Scholar
  26. 26.
    Robinson, J.T., Manolatou, C., et al. Ultrasmall mode volumes in dielectric optical microcavities. Phys. Rev. Lett. 95, 143901 (2005)CrossRefGoogle Scholar
  27. 27.
    Kim, S., Cai, J., et al. New ring resonator configuration using hybrid photonic crystal and conventional waveguide structures. Opt. Express 12, 2356–2364 (2004)CrossRefGoogle Scholar
  28. 28.
    Kumar, V.D., Srinivas, T., et al. Investigation of ring resonators in photonic crystal circuits. Photon. Nanostruct. 2, 199–206 (2004)CrossRefGoogle Scholar
  29. 29.
    Jeong, S.H., Sugisaka, J.I., et al. Resonant characteristics in a two-dimensional photonic crystal ring resonator with a triangular lattice of air holes. Jpn. J. Appl. Phys. 46, L534–536 (2007)CrossRefGoogle Scholar
  30. 30.
    Jeong, S.H., Yamamoto, N., et al. GaAs-based two-dimensional photonic crystal slab ring resonator consisting of a directional coupler and bent waveguides. J. Opt. Soc. Am. B 24, 1951–1959 (2007)CrossRefGoogle Scholar
  31. 31.
    Jones, T.B., Hochberg, M., et al. High-Q optical resonators in silicon-on-insulator-based slot waveguides. Appl. Phys. Lett. 86, 081101 (2005)CrossRefGoogle Scholar
  32. 32.
    Kim, S.H., Ryu, H.Y., et al. Two-dimensional photonic crystal hexagonal waveguide ring laser. Appl. Phys. Lett. 81, 2499–2501 (2002)CrossRefGoogle Scholar
  33. 33.
    Alija, A.R., Martınez, L.J., et al. Coupled-cavity two-dimensional photonic crystal waveguide ring laser. Appl. Phys. Lett. 89, 101102 (2006)CrossRefGoogle Scholar
  34. 34.
    Qiang, Z., Zhou, W., et al. Optical add-drop filters based on photonic crystal ring resonators. Opt. Express 15, 1823–1831 (2007)CrossRefGoogle Scholar
  35. 35.
    Chiu, W., Huang, T., et al. A photonic crystal ring resonator formed by SOI nano-rods. Opt. Express 15, 15500–15506 (2007)CrossRefGoogle Scholar
  36. 36.
    Ogusu, K., Takayama, K. Optical bistability in photonic crystal microrings with nonlinear dielectric materials. Opt. Express 16, 7525–7539 (2008)CrossRefGoogle Scholar
  37. 37.
    Mansouri-Birjandi, M.A., Moravvej-Farshi, M.K., et al. Ultrafast low-threshold all-optical switch implemented by arrays of ring resonators coupled to a Mach-Zehnder interferometer arm: based on 2D photonic crystals. Appl. Opt. 47, 5041–5050 (2008)CrossRefGoogle Scholar
  38. 38.
    Andalib, P., Granpayeh, N. All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B 26, 10–16 (2009)CrossRefGoogle Scholar
  39. 39.
    Romero-Vivas, J.R., Chigrin, D., et al. Resonant add-drop filter based on a photonic quasicrystal. Opt. Express 13, 826–835 (2005)CrossRefGoogle Scholar
  40. 40.
    Qiang, Z., Zhou, W.D., et al. Characteristics of ultra-compact polymer modulators based on silicon photonic crystal ring resonators. J. Nanophotonics 2, 023507 (2008)CrossRefGoogle Scholar
  41. 41.
    Sakoda, K. Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices. Phys. Rev. B 52, 7982–7986 (1995)CrossRefGoogle Scholar
  42. 42.
    Kim, S.H., Lee, Y.H. Symmetry relations of two-dimensional photonic crystal cavity modes. IEEE J. Quant. Electron. 39, 1081–1085 (2003)CrossRefGoogle Scholar
  43. 43.
    Rabiei, P., Steier, W.H., et al. Polymer micro-ring filters and modulators. IEEE J. Lightwave Technol. 20, 1968–1975 (2002)CrossRefGoogle Scholar
  44. 44.
    Shi, Y., Zhang, C., et al. Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape. Science 288, 119 (2000)CrossRefGoogle Scholar
  45. 45.
    Chen, D., Fetterman, H.R., et al. Demonstration of 110 GHz electro-optic polymer modulators. Appl. Phys. Lett. 70, 3335 (1997)CrossRefGoogle Scholar
  46. 46.
    Eldada, L. Polymer integrated optics: Promise vs. practicality. Proc. SPIE 4642 (2002)Google Scholar
  47. 47.
    Lee, M., Katz, H.E., et al. Broadband modulation of light by using an electro-optic polymer. Science 298, 1401–1403 (2002)CrossRefGoogle Scholar
  48. 48.
    Enami, Y., Derose, C.T., et al. Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients. Nature Photon. 6, 180–185 (2007)CrossRefGoogle Scholar
  49. 49.
    Yuan, H.C., Ma, Z., et al. High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers. J. Appl. Phys. 100, 013708 (2006)CrossRefGoogle Scholar
  50. 50.
    Qiang, Z., Zhou, W., et al. Ultra-compact polymer and silicon modulator design based on photonic crystal ring resonators. Proceedings of SPIE 6896, 68960B (2008)CrossRefGoogle Scholar
  51. 51.
    Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quant. Electron. 12, 1678–1687 (2006)CrossRefGoogle Scholar
  52. 52.
    Emelett, S., Soref, R. Synthesis of dual-microring-resonator cross-connect filters. Opt. Express 13, 4439–4456 (2005)CrossRefGoogle Scholar
  53. 53.
    Emelett, S., Soref, R. Analysis of dual-microring-resonator cross-connect switches and modulators. Opt. Express 13, 7840–7853 (2005)CrossRefGoogle Scholar
  54. 54.
    Park, H., Fang, A., et al. Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. Opt. Express 13, 9460–9464 (2005)CrossRefGoogle Scholar
  55. 55.
    Park, H., Fang, A.W., et al. Design and fabrication of optically pumped hybrid silicon-AlGaInAs evanescent lasers. IEEE J. Sel. Top. Quant. Electron. 12, 1657–1663 (2006)CrossRefGoogle Scholar
  56. 56.
    Park, H., Fang, A.W., et al. A hybrid AlGaInAs-silicon evanescent waveguide photodetector. Opt. Express 15, 6044–6052 (2007)CrossRefGoogle Scholar
  57. 57.
    Soref, R., Little, B.E. Proposed N-wavelength M-fiber WDM crossconnect switch using active microring resonators. IEEE Photon. Technol. Lett. 10, 1121–1123 (1998)CrossRefGoogle Scholar
  58. 58.
    McNab, S., Moll, N., et al. Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt. Express 11, 2927–2939 (2003)CrossRefGoogle Scholar
  59. 59.
    Vlasov, Y.A., McNab, S.J. Coupling into the slow light mode in slab-type photonic crystal waveguides. Opt. Lett. 31, 50–52 (2006)CrossRefGoogle Scholar
  60. 60.
    Cho, S., Soref, R. Apodized SCISSORs for filtering and switching. Opt. Express 16, 19078–19090 (2008)CrossRefGoogle Scholar
  61. 61.
    Van, V., Ding, T.N., et al. Compact slow-wave structures with maximally flat group delays based on circular arrays of microring resonators. In: OSA integrated photonics and nanophotonics research and applications topical meeting, Boston, MA, paper IWG5 (2008)Google Scholar
  62. 62.
    Zhang, Z., Dainese, M., et al. Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling. Opt. Express 16, 4621–4630 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag US 2010

Authors and Affiliations

  1. 1.Department of Electrical Engineering, NanoFAB CenterUniversity of Texas at ArlingtonArlingtonUSA
  2. 2.Department of Electrical Engineering, NanoFAB CenterUniversity of Texas at ArlingtonArlingtonUSA
  3. 3.Air Force Research Laboratory, AFRL/RYNC, Hanscom Air Force BaseBostonUSA

Personalised recommendations