Skip to main content

Microfiber and Microcoil Resonators and Resonant Sensors

  • Chapter
  • First Online:
Book cover Photonic Microresonator Research and Applications

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 156))

Abstract

The manufacture of tapers from optical fibers provides the possibility to get long, uniform, and robust micrometer- or nanometer-size wires. Optical microfibers are fabricated by adiabatically stretching conventional optical fibers and thus preserve the original optical fiber dimensions at their input/output pigtails, allowing ready splicing to standard fibers. Since microfibers have a size comparable to the wavelength of the light propagating in it, a considerable fraction of power can be located in the evanescent field, outside the microfiber physical boundary. When a microfiber is coiled, the mode propagating in it interferes with itself to give a resonator. In this chapter the latest results on the manufacture of optical microfiber resonators are presented. Optical microfibers can be used to fabricate single-loop and multiple-loop (coil) resonators with extremely high Q factors. High Q resonators can be used for refractometric biosensors and because of their design they provide an exceptionally high sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bures, J., Ghosh, R. Power density of the evanescent field in the vicinity of a tapered fiber. J. Opt. Soc. Am. A 16, 1992–1996 (1999)

    Article  Google Scholar 

  2. Bilodeau, F., Hill, K. O., et al. Compact, low-loss, fused biconical taper couplers: Overcoupled operation and antisymmetric supermode cutoff. Opt. Letters 12, 634–636 (1987)

    Article  Google Scholar 

  3. Tong, L.M., Gattass, R.R., et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816–819 (2003)

    Article  Google Scholar 

  4. Brambilla, G., Finazzi, V., et al. Ultra-low-loss optical fiber nanotapers. Opt. Express 12, 2258–2263 (2004)

    Article  Google Scholar 

  5. Sumetsky, M., Dulashko, Y., et al. Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer. Opt. Express 12, 3521–3531 (2004)

    Article  Google Scholar 

  6. Brambilla, G., Koizumi, F., et al. Compound-glass optical nanowires. Electron. Lett. 41, 400–402 (2005)

    Google Scholar 

  7. Brambilla, G., Xu, F., et al. Fabrication of optical fibre nanowires and their optical and mechanical characterisation. Electron. Lett. 42, 517–519 (2006)

    Article  Google Scholar 

  8. Leon-Saval, S.G., Birks, T.A., et al. Supercontinuum generation in submicron fibre waveguides. Opt. Express 12, 2864–2869 (2004)

    Article  Google Scholar 

  9. Tong, L.M., Lou, J.Y., et al. Assembly of silica nanowires on silica aerogels for microphotonic devices. Nano Lett. 5, 259–262 (2005)

    Article  Google Scholar 

  10. Sumetsky, M. Optical fiber microcoil resonator. Opt. Express 12, 2303–2316 (2004)

    Article  Google Scholar 

  11. Sumetsky, M., Dulashko, et al. Demonstration of a microfiber loop optical resonator. OFC/NFOEC (2005)

    Google Scholar 

  12. Sumetsky, M., Dulashko, et al. Demonstration of a multi-turn microfiber coil resonator. OFC/NFOEC (2007)

    Google Scholar 

  13. Xu, F., Brambilla, G. Manufacture of 3-D microfiber coil resonators. IEEE Photon. Technol. Lett. 19, 1481–1483 (2007)

    Article  Google Scholar 

  14. Xu, F., Brambilla, G. Embedding optical microfiber coil resonators in Teflon. Opt. Lett. 32, 2164–2166 (2007)

    Article  Google Scholar 

  15. Xu, F., Horak, P., et al. Optical microfiber coil resonator refractometric sensor. Opt. Express 15, 7888–7893 (2007)

    Article  Google Scholar 

  16. Xu, F., Pruneri, V., et al. An embedded optical nanowire loop resonator refractometric sensor. Opt. Express 16, 1062–1067 (2008)

    Article  Google Scholar 

  17. Xu, F., Brambilla, G. Demonstration of a refractometric sensor based on optical microfiber coil resonator. Appl. Phys. Lett. 92, 101126 (2008)

    Article  Google Scholar 

  18. Stokes, L.F., Chodorow, M., et al. All-single-mode fiber resonator. Opt. Lett. 7, 288–290 (1982)

    Article  Google Scholar 

  19. Caspar, C., Bachus, E.J. Fibre-optic microring-resonator with 2 mm diameter. Electron. Lett. 25, 1506–1508 (1989)

    Article  Google Scholar 

  20. Sumetsky, M., Dulashko, Y., et al. Optical microfiber loop resonator. Appl. Phys. Lett. 86, 161108 (2005)

    Article  Google Scholar 

  21. Sumetsky, M., Dulashko, Y., et al. The microfiber loop resonator: Theory, experiment, and application. J. Lightwave Technol. 24, 242–250 (2006)

    Article  Google Scholar 

  22. Jiang, X.S., Tong, L.M., et al. Demonstration of optical microfiber knot resonators. Appl. Phys. Lett. 88, 223501 (2006)

    Article  Google Scholar 

  23. Xu, F., Brambilla, G. Preservation of micro-optical fibers by embedding. Jpn. J. Appl. Phys. 47, 6675–6677 (2008)

    Article  Google Scholar 

  24. Adams, M., DeRose, G.A., et al. Lithographically fabricated optical cavities for refractive index sensing. J. Vac. Sci. Technol. B 23, 3168–3173 (2005)

    Article  Google Scholar 

  25. Chao, C.Y., Fung, W., et al. Polymer microring resonators for biochemical sensing applications. IEEE J. Sel. Top. Quant. Electron. 12, 134–142 (2006)

    Article  Google Scholar 

  26. Hanumegowda, N.M., Stica, et al. Refractometric sensors based on microsphere resonators. Appl. Phys. Lett. 87, 201107 (2005)

    Article  Google Scholar 

  27. White, I.M., Oveys, H., et al. Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides. Appl. Phys. Lett. 89, 191106 (2006)

    Article  Google Scholar 

  28. White, I.M., Zhu, et al. Refractometric sensors for lab-on-a-chip based on optical ring resonators. IEEE Sens. J. 7, 28–35 (2007)

    Article  Google Scholar 

  29. Dinleyici, M.S., Patterson, D.B. Vector modal solution of evanescent coupler. J. Lightwave Technol. 15, 2316–2324 (1997)

    Article  Google Scholar 

  30. Marcuse, D., Ladouceur, F., et al. Vector modes of d-shaped fibers. sIEE Proc. Part J. Optoelectron. 139, 117–126 (1992)

    Article  Google Scholar 

  31. Chao, C.Y., Guo, L.J. Design and optimization of microring resonators in biochemical sensing applications. J. Lightwave Technol. 24, 1395–1402 (2006)

    Article  Google Scholar 

  32. White, I.M., Fan, X. On the performance quantification of resonant refractive index sensors. Optics Express 16, 1020–1028 (2008)

    Article  Google Scholar 

  33. Knight, J.C., Cheung, G., et al. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt. Lett. 22, 1129–1131 (1997)

    Article  Google Scholar 

  34. Xu, F., Horak, P., et al. Optimized design of microcoil resonators. J. Lightwave Technol. 25, 1561–1567 (2007)

    Article  Google Scholar 

  35. Xu, F., Horak, P., et al. Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator. Appl. Opt. 46, 570–573 (2007)

    Article  Google Scholar 

  36. Altkorn, R., Koev, I., et al. Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy. Appl. Opt. 36, 8992–8998 (1997)

    Article  Google Scholar 

  37. Dress, P., Belz, M., et al. Physical analysis of teflon coated capillary waveguides. Sens. Actuators B 51, 278–284 (1998)

    Article  Google Scholar 

  38. Kim, C.B., Su, C.B. Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fibre optic Fresnel ratio meter. Meas. Sci. Technol. 15, 1683–1686 (2004)

    Article  Google Scholar 

  39. Balakirev, M.Y., Porte, S., et al. Photochemical patterning of biological molecules inside a glass capillary. Anal. Chem. 77, 5474–5479 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

Gilberto Brambilla gratefully acknowledges the Royal Society (London, UK) for his research fellowship. The authors thank EPSRC (UK research council) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag US

About this chapter

Cite this chapter

Xu, F., Brambilla, G. (2010). Microfiber and Microcoil Resonators and Resonant Sensors. In: Chremmos, I., Schwelb, O., Uzunoglu, N. (eds) Photonic Microresonator Research and Applications. Springer Series in Optical Sciences, vol 156. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1744-7_12

Download citation

Publish with us

Policies and ethics