Skip to main content

Microarray-Based Cytogenetics

  • Chapter
  • First Online:
The Principles of Clinical Cytogenetics
  • 5644 Accesses

Abstract

he field of cytogenetics has experienced many revolutions including hypotonic solution, banding, high-resolution preparation and analysis, and fluorescence in situ hybridization (FISH). However, none of these advances resulted in the rapid identification of novel cytogenetic aberrations that microarray analysis has achieved. This chapter will review the various types of genomic microarrays available to identify copy number gains and losses of the genome that result in chromosomal abnormalities. As with any new technology, there are advantages and challenges that accompany innovation. However, even with these challenges, the enormous potential of microarray testing for uncovering the etiologies of intellectual, developmental, and physical disabilities is staggering. While cytogeneticists are accustomed to unusual findings in the laboratory, the amount of data and the interpretive challenge of microarray data were not anticipated. These challenges, as well as the advantages of microarrays, will be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://decipher.sanger.ac.uk/

  2. 2.

    http://projects.tcag.ca/variation/

  3. 3.

    http://agserver01.azn.nl:8080/ecaruca/ecaruca.jsp

  4. 4.

    http://www.genoglyphix.com

References

  1. Bui T-H, Vetro A, Zuffardi O, Shaffer LG. Current controversies in prenatal diagnosis 3: is conventional chromosome analysis necessary in the post-array CGH era? Prenat Diagn. 2011;31(3):235–43.

    Article  PubMed  Google Scholar 

  2. Neill NJ, Ballif BC, Lamb AN, Parikh S, Ravnan JB, Schultz R, et al. Recurrence, submicroscopic complexity, and potential clinical relevance of copy gains detected by array CGH that are shown to be unbalanced insertions by FISH. Genome Res. 2011;21(4):535–44.

    Article  PubMed  CAS  Google Scholar 

  3. Cross J, Peters G, Wu Z, Brohede J, Hannan GN. Resolution of trisomic mosaicism in prenatal diagnosis: estimated performance of a 50 K SNP microarray. Prenat Diagn. 2007;27(13):1197–204.

    Article  PubMed  Google Scholar 

  4. Neill NJ, Torchia BS, Bejjani BA, Shaffer LG, Ballif BC. Comparative analysis of copy number detection by whole-genome BAC and oligonucleotide array CGH. Mol Cytogenet. 2010;3:11–24.

    Article  PubMed  Google Scholar 

  5. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258(5083): 818–21.

    Article  PubMed  CAS  Google Scholar 

  6. DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet. 1996;14(4):457–60.

    Article  PubMed  CAS  Google Scholar 

  7. Lucito R, Healy J, Alexander J, Reiner A, Esposito D, Chi M, et al. Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res. 2003;13(10):2291–305.

    Article  PubMed  CAS  Google Scholar 

  8. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 1998;20(2):207–11.

    Article  PubMed  CAS  Google Scholar 

  9. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270(5235):467–70.

    Article  PubMed  CAS  Google Scholar 

  10. Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Dohner H, et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer. 1997;20(4):399–407.

    Article  PubMed  CAS  Google Scholar 

  11. Ballif BC, Kashork CD, Saleki R, Rorem E, Sundin K, Bejjani BA, et al. Detecting sex chromosome anomalies and common triploidies in products of conception by array-based comparative genomic hybridization. Prenat Diagn. 2006;26(4):333–9.

    Article  PubMed  CAS  Google Scholar 

  12. Bejjani BA, Saleki R, Ballif BC, Rorem EA, Sundin K, Theisen A, et al. Use of targeted array-based CGH for the clinical diagnosis of chromosomal imbalance: is less more? Am J Med Genet A. 2005;134(3):259–67.

    PubMed  Google Scholar 

  13. Shaffer LG, Kashork CD, Saleki R, Rorem E, Sundin K, Ballif BC, et al. Targeted genomic microarray analysis for identification of chromosome abnormalities in 1,500 consecutive clinical cases. J Pediatr. 2006;149(1):98–102.

    Article  PubMed  CAS  Google Scholar 

  14. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–64.

    Article  PubMed  CAS  Google Scholar 

  15. Tyson C, Harvard C, Locker R, Friedman JM, Langlois S, Lewis ME, et al. Submicroscopic deletions and duplications in individuals with intellectual disability detected by array-CGH. Am J Med Genet A. 2005;139(3):173–85.

    PubMed  CAS  Google Scholar 

  16. Manning M, Hudgins L. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med. 2010;12(11):742–5.

    Article  PubMed  CAS  Google Scholar 

  17. Le Caignec C, Boceno M, Saugier-Veber P, Jacquemont S, Joubert M, David A, et al. Detection of genomic imbalances by array based comparative genomic hybridisation in fetuses with multiple malformations. J Med Genet. 2005;42(2):121–8.

    Article  PubMed  Google Scholar 

  18. Rickman L, Fiegler H, Shaw-Smith C, Nash R, Cirigliano V, Voglino G, et al. Prenatal detection of unbalanced chromosomal rearrangements by array CGH. J Med Genet. 2006;43(4):353–61.

    Article  PubMed  CAS  Google Scholar 

  19. Vialard F, Molina Gomes D, Leroy B, Quarello E, Escalona A, Le Sciellour C, et al. Array comparative genomic hybridization in prenatal diagnosis: another experience. Fetal Diagn Ther. 2009;25(2): 277–84.

    Article  PubMed  CAS  Google Scholar 

  20. Valduga M, Philippe C, Bach Segura P, Thiebaugeorges O, Miton A, Beri M, et al. A retrospective study by oligonucleotide array-CGH analysis in 50 fetuses with multiple malformations. Prenat Diagn. 2010;30(4):333–41.

    PubMed  CAS  Google Scholar 

  21. Deshpande M, Harper J, Holloway M, Palmer R, Wang R. Evaluation of array comparative genomic hybridization for genetic analysis of chorionic villus sampling from pregnancy loss in comparison to karyotyping and multiplex ligation-dependent probe amplification. Genet Test Mol Biomarkers. 2010;14(3):421–4.

    Article  PubMed  CAS  Google Scholar 

  22. Faas BH, van der Burgt I, Kooper AJ, Pfundt R, Hehir-Kwa JY, Smits AP, et al. Identification of clinically significant, submicroscopic chromosome alterations and UPD in fetuses with ultrasound anomalies using genome-wide 250 k SNP array analysis. J Med Genet. 2010;47(9):586–94.

    Article  PubMed  CAS  Google Scholar 

  23. Sahoo T, Cheung SW, Ward P, Darilek S, Patel A, del Gaudio D, et al. Prenatal diagnosis of chromosomal abnormalities using array-based comparative genomic hybridization. Genet Med. 2006;8(11):719–27.

    Article  PubMed  CAS  Google Scholar 

  24. Shaffer LG, Coppinger J, Alliman S, Torchia BA, Theisen A, Ballif BC, et al. Comparison of microarray-based detection rates for cytogenetic abnormalities in prenatal and neonatal specimens. Prenat Diagn. 2008;28(9):789–95.

    Article  PubMed  Google Scholar 

  25. Van den Veyver IB, Patel A, Shaw CA, Pursley AN, Kang SH, Simovich MJ, et al. Clinical use of array comparative genomic hybridization (aCGH) for prenatal diagnosis in 300 cases. Prenat Diagn. 2009;29(1):29–39.

    Article  PubMed  Google Scholar 

  26. Coppinger J, Alliman S, Lamb AN, Torchia BS, Bejjani BA, Shaffer LG. Whole-genome microarray analysis in prenatal specimens identifies clinically significant chromosome alterations without increase in results of unclear significance compared to targeted microarray. Prenat Diagn. 2009;29(12):1156–66.

    Article  PubMed  Google Scholar 

  27. Kleeman L, Bianchi DW, Shaffer LG, Rorem E, Cowan J, Craigo SD, et al. Use of array comparative genomic hybridization for prenatal diagnosis of fetuses with sonographic anomalies and normal metaphase karyotype. Prenat Diagn. 2009;29(13):1213–7.

    Article  PubMed  Google Scholar 

  28. Tyreman M, Abbott KM, Willatt LR, Nash R, Lees C, Whittaker J, et al. High resolution array analysis: diagnosing pregnancies with abnormal ultrasound findings. J Med Genet. 2009;46(8):531–41.

    Article  PubMed  CAS  Google Scholar 

  29. Maya I, Davidov B, Gershovitz L, Zalzstein Y, Taub E, Coppinger J, et al. Diagnostic utility of array-based comparative genomic hybridization (aCGH) in a prenatal setting. Prenat Diagn. 2010;30(12–13):1131–7.

    Article  PubMed  Google Scholar 

  30. ACOG Committee Opinion No. 446: array comparative genomic hybridization in prenatal diagnosis. Obstet Gynecol. 2009;114(5): 1161–3.

    Google Scholar 

  31. Avet-Loiseau H, Li C, Magrangeas F, Gouraud W, Charbonnel C, Harousseau JL, et al. Prognostic significance of copy-number alterations in multiple myeloma. J Clin Oncol. 2009;27(27):4585–90.

    Article  PubMed  CAS  Google Scholar 

  32. Cheung KJ, Shah SP, Steidl C, Johnson N, Relander T, Telenius A, et al. Genome-wide profiling of follicular lymphoma by array comparative genomic hybridization reveals prognostically significant DNA copy number imbalances. Blood. 2009;113(1):137–48.

    Article  PubMed  CAS  Google Scholar 

  33. Remke M, Pfister S, Kox C, Toedt G, Becker N, Benner A, et al. High-resolution genomic profiling of childhood T-ALL reveals frequent copy-number alterations affecting the TGF-beta and PI3K-AKT pathways and deletions at 6q15-16.1 as a genomic marker for unfavorable early treatment response. Blood. 2009;114(5):1053–62.

    Article  PubMed  CAS  Google Scholar 

  34. Schwaenen C, Nessling M, Wessendorf S, Salvi T, Wrobel G, Radlwimmer B, et al. Automated array-based genomic profiling in chronic lymphocytic leukemia: development of a clinical tool and discovery of recurrent genomic alterations. Proc Natl Acad Sci USA. 2004;101(4):1039–44.

    Article  PubMed  CAS  Google Scholar 

  35. Tyybakinoja A, Vilpo J, Knuutila S. High-resolution oligonucleotide array-CGH pinpoints genes involved in cryptic losses in chronic lymphocytic leukemia. Cytogenet Genome Res. 2007; 118(1):8–12.

    Article  PubMed  CAS  Google Scholar 

  36. Gunn SR, Mohammed MS, Gorre ME, Cotter PD, Kim J, Bahler DW, et al. Whole-genome scanning by array comparative genomic hybridization as a clinical tool for risk assessment in chronic lymphocytic leukemia. J Mol Diagn. 2008;10(5):442–51.

    Article  PubMed  CAS  Google Scholar 

  37. Forconi F, Rinaldi A, Kwee I, Sozzi E, Raspadori D, Rancoita PM, et al. Genome-wide DNA analysis identifies recurrent imbalances predicting outcome in chronic lymphocytic leukaemia with 17p deletion. Br J Haematol. 2008;143(4):532–6.

    PubMed  Google Scholar 

  38. Patel A, Kang SH, Lennon PA, Li YF, Rao PN, Abruzzo L, et al. Validation of a targeted DNA microarray for the clinical evaluation of recurrent abnormalities in chronic lymphocytic leukemia. Am J Hematol. 2008;83(7):540–6.

    Article  PubMed  CAS  Google Scholar 

  39. Gunn SR, Bolla AR, Barron LL, Gorre ME, Mohammed MS, Bahler DW, et al. Array CGH analysis of chronic lymphocytic leukemia reveals frequent cryptic monoallelic and biallelic deletions of chromosome 22q11 that include the PRAME gene. Leuk Res. 2009;33(9):1276–81.

    Article  PubMed  CAS  Google Scholar 

  40. Grubor V, Krasnitz A, Troge JE, Meth JL, Lakshmi B, Kendall JT, et al. Novel genomic alterations and clonal evolution in chronic lymphocytic leukemia revealed by representational oligonucleotide microarray analysis (ROMA). Blood. 2009;113(6):1294–303.

    Article  PubMed  CAS  Google Scholar 

  41. Tyybakinoja A, Elonen E, Piippo K, Porkka K, Knuutila S. Oligonucleotide array-CGH reveals cryptic gene copy number alterations in karyotypically normal acute myeloid leukemia. Leukemia. 2007;21(3):571–4.

    Article  PubMed  CAS  Google Scholar 

  42. Gondek LP, Tiu R, O’Keefe CL, Sekeres MA, Theil KS, Maciejewski JP. Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood. 2008;111(3):1534–42.

    Article  PubMed  CAS  Google Scholar 

  43. Akagi T, Ogawa S, Dugas M, Kawamata N, Yamamoto G, Nannya Y, et al. Frequent genomic abnormalities in acute myeloid leukemia/myelodysplastic syndrome with normal karyotype. Haematologica. 2009;94(2):213–23.

    Article  PubMed  CAS  Google Scholar 

  44. Walter MJ, Payton JE, Ries RE, Shannon WD, Deshmukh H, Zhao Y, et al. Acquired copy number alterations in adult acute myeloid leukemia genomes. Proc Natl Acad Sci USA. 2009;106(31): 12950–5.

    Article  PubMed  CAS  Google Scholar 

  45. Woo KS, Kim KE, Kim KH, Kim SH, Park JI, Shaffer LG, et al. Deletions of chromosome arms 7p and 7q in adult acute myeloid leukemia: a marker chromosome confirmed by array comparative genomic hybridization. Cancer Genet Cytogenet. 2009;194(2): 71–4.

    Article  PubMed  CAS  Google Scholar 

  46. Yasar D, Karadogan I, Alanoglu G, Akkaya B, Luleci G, Salim O, et al. Array comparative genomic hybridization analysis of adult acute leukemia patients. Cancer Genet Cytogenet. 2010;197(2): 122–9.

    Article  PubMed  CAS  Google Scholar 

  47. O’Keefe CL, Tiu R, Gondek LP, Powers J, Theil KS, Kalaycio M, et al. High-resolution genomic arrays facilitate detection of novel cryptic chromosomal lesions in myelodysplastic syndromes. Exp Hematol. 2007;35(2):240–51.

    Article  PubMed  Google Scholar 

  48. Kim JE, Woo KS, Kim KE, Kim SH, Park JI, Shaffer LG, et al. Duplications of the long arm of both chromosome 1, dup(1)(q21q32), leading to tetrasomy 1q in myelodysplastic syndrome. Leuk Res. 2010;34(8):e210–2.

    Article  PubMed  Google Scholar 

  49. Kralovics R, Teo SS, Buser AS, Brutsche M, Tiedt R, Tichelli A, et al. Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. Blood. 2005;106(10):3374–6.

    Article  PubMed  CAS  Google Scholar 

  50. Irving JA, Bloodworth L, Bown NP, Case MC, Hogarth LA, Hall AG. Loss of heterozygosity in childhood acute lymphoblastic leukemia detected by genome-wide microarray single nucleotide polymorphism analysis. Cancer Res. 2005;65(8):3053–8.

    PubMed  CAS  Google Scholar 

  51. Paulsson K, Heidenblad M, Morse H, Borg A, Fioretos T, Johansson B. Identification of cryptic aberrations and characterization of translocation breakpoints using array CGH in high hyperdiploid childhood acute lymphoblastic leukemia. Leukemia. 2006;20(11):2002–7.

    Article  PubMed  CAS  Google Scholar 

  52. Kuchinskaya E, Heyman M, Nordgren A, Schoumans J, Staaf J, Borg A, et al. Array-CGH reveals hidden gene dose changes in children with acute lymphoblastic leukaemia and a normal or failed karyotype by G-banding. Br J Haematol. 2008;140(5):572–7.

    Article  PubMed  Google Scholar 

  53. Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA, et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science. 2008;322(5906):1377–80.

    Article  PubMed  CAS  Google Scholar 

  54. Usvasalo A, Raty R, Harila-Saari A, Koistinen P, Savolainen ER, Vettenranta K, et al. Acute lymphoblastic leukemias with normal karyotypes are not without genomic aberrations. Cancer Genet Cytogenet. 2009;192(1):10–7.

    Article  PubMed  CAS  Google Scholar 

  55. Kim JE, Woo KS, Kim KE, Kim SH, Park JI, Shaffer LG, et al. A rare case of acute lymphoblastic leukemia with t(12;17)(p13;q21). Korean J Lab Med. 2010;30(3):239–43.

    Article  PubMed  Google Scholar 

  56. Rossi MR, Conroy J, McQuaid D, Nowak NJ, Rutka JT, Cowell JK. Array CGH analysis of pediatric medulloblastomas. Genes Chromosomes Cancer. 2006;45(3):290–303.

    Article  PubMed  CAS  Google Scholar 

  57. Woo KS, Sung KS, Kim KU, Shaffer LG, Han JY. Characterization of complex chromosome aberrations in a recurrent meningioma combining standard cytogenetic and array comparative genomic hybridization techniques. Cancer Genet Cytogenet. 2008;180(1):56–9.

    Article  PubMed  CAS  Google Scholar 

  58. Jain AN, Chin K, Borresen-Dale AL, Erikstein BK, Eynstein Lonning P, Kaaresen R, et al. Quantitative analysis of chromosomal CGH in human breast tumors associates copy number abnormalities with p53 status and patient survival. Proc Natl Acad Sci USA. 2001;98(14):7952–7.

    Article  PubMed  CAS  Google Scholar 

  59. Naylor TL, Greshock J, Wang Y, Colligon T, Yu QC, Clemmer V, et al. High resolution genomic analysis of sporadic breast cancer using array-based comparative genomic hybridization. Breast Cancer Res. 2005;7(6):R1186–98.

    Article  PubMed  CAS  Google Scholar 

  60. Weiss MM, Kuipers EJ, Postma C, Snijders AM, Pinkel D, Meuwissen SG, et al. Genomic alterations in primary gastric adenocarcinomas correlate with clinicopathological characteristics and survival. Cell Oncol. 2004;26(5–6):307–17.

    PubMed  CAS  Google Scholar 

  61. Wilhelm M, Veltman JA, Olshen AB, Jain AN, Moore DH, Presti Jr JC, et al. Array-based comparative genomic hybridization for the differential diagnosis of renal cell cancer. Cancer Res. 2002;62(4):957–60.

    PubMed  CAS  Google Scholar 

  62. Strefford JC, Stasevich I, Lane TM, Lu YJ, Oliver T, Young BD. A combination of molecular cytogenetic analyses reveals complex genetic alterations in conventional renal cell carcinoma. Cancer Genet Cytogenet. 2005;159(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  63. Daigo Y, Chin SF, Gorringe KL, Bobrow LG, Ponder BA, Pharoah PD, et al. Degenerate oligonucleotide primed-polymerase chain reaction-based array comparative genomic hybridization for extensive amplicon profiling of breast cancers: a new approach for the molecular analysis of paraffin-embedded cancer tissue. Am J Pathol. 2001;158(5):1623–31.

    Article  PubMed  CAS  Google Scholar 

  64. Greisman HA, Yi HS, Hoffman NG. TransCGH: rapid identification and high-resolution mapping of balanced IgH translocations in archival DNA using custom oligonucleotide arrays. ASH Annu Meet Abstr. 2007;110(11):459.

    Google Scholar 

  65. Greisman HA, Greiner TC, Yi HS, Hoffman NG. High-throughput cloning of T(11;14) breakpoints outside the major translocation cluster in mantle cell lymphoma. ASH Annu Meet Abstr. 2008;112(11):3752.

    Google Scholar 

  66. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36(9):949–51.

    Article  PubMed  CAS  Google Scholar 

  67. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy number polymorphism in the human genome. Science. 2004;305(5683):525–8.

    Article  PubMed  CAS  Google Scholar 

  68. Sharp AJ. Emerging themes and new challenges in defining the role of structural variation in human disease. Hum Mutat. 2009;30(2):135–44.

    Article  PubMed  CAS  Google Scholar 

  69. Rosenfeld J, Coppinger J, Bejjani B, Girirajan S, Eichler E, Shaffer L, et al. Speech delays and behavioral problems are the predominant features in individuals with developmental delays and 16p11.2 microdeletions and microduplications. J Neurodevel Disord. 2010;2(1):26–38.

    Article  Google Scholar 

  70. Brunetti-Pierri N, Berg JS, Scaglia F, Belmont J, Bacino CA, Sahoo T, et al. Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat Genet. 2008;40(12):1466–71.

    Article  PubMed  CAS  Google Scholar 

  71. Mefford HC, Sharp AJ, Baker C, Itsara A, Jiang Z, Buysse K, et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med. 2008;359(16):1685–99.

    Article  PubMed  CAS  Google Scholar 

  72. Eichler EE, Zimmerman AW. A hot spot of genetic instability in autism. N Engl J Med. 2008;358(7):737–9.

    Article  PubMed  CAS  Google Scholar 

  73. Kumar RA, KaraMohamed S, Sudi J, Conrad DF, Brune C, Badner JA, et al. Recurrent 16p11.2 microdeletions in autism. Hum Mol Genet. 2008;17(4):628–38.

    Article  PubMed  CAS  Google Scholar 

  74. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med. 2008;358(7):667–75.

    Article  PubMed  CAS  Google Scholar 

  75. Ullmann R, Turner G, Kirchhoff M, Chen W, Tonge B, Rosenberg C, et al. Array CGH identifies reciprocal 16p13.1 duplications and deletions that predispose to autism and/or mental retardation. Hum Mutat. 2007;28(7):674–82.

    Article  PubMed  CAS  Google Scholar 

  76. Hannes FD, Sharp AJ, Mefford HC, de Ravel T, Ruivenkamp CA, Breuning MH, et al. Recurrent reciprocal deletions and duplications of 16p13.11: the deletion is a risk factor for MR/MCA while the duplication may be a rare benign variant. J Med Genet. 2009;46(4):223–32.

    Article  PubMed  CAS  Google Scholar 

  77. Friedman JM, Baross A, Delaney AD, Ally A, Arbour L, Armstrong L, et al. Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation. Am J Hum Genet. 2006;79(3):500–13.

    Article  PubMed  CAS  Google Scholar 

  78. Adams SA, Coppinger J, Saitta SC, Stroud T, Kandamurugu M, Fan Z, et al. Impact of genotype-first diagnosis: the detection of microdeletion and microduplication syndromes with cancer predisposition by aCGH. Genet Med. 2009;11(5):314–22.

    Article  PubMed  Google Scholar 

  79. Shaikh TH, Gai X, Perin JC, Glessner JT, Xie H, Murphy K, et al. High-resolution mapping and analysis of copy number variations in the human genome: a data resource for clinical and research applications. Genome Res. 2009;19(9):1682–90.

    Article  PubMed  CAS  Google Scholar 

  80. Feenstra I, Fang J, Koolen DA, Siezen A, Evans C, Winter RM, et al. European Cytogeneticists Association Register of Unbalanced Chromosome Aberrations (ECARUCA); an online database for rare chromosome abnormalities. Eur J Med Genet. 2006;49(4):279–91.

    Article  PubMed  CAS  Google Scholar 

  81. Shevell MI. The evaluation of the child with a global developmental delay. Semin Pediatr Neurol. 1998;5(1):21–6.

    Article  PubMed  CAS  Google Scholar 

  82. Shevell MI, Bejjani BA, Srour M, Rorem EA, Hall N, Shaffer LG. Array comparative genomic hybridization in global developmental delay. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(7):1101–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Microarray analysis for Figs. 18.1, 18.2, 18.3, 18.4, and 18.5 was performed at Signature Genomic Laboratories (Spokane, WA). Results were visualized using Signature Genomic Laboratories’ Genoglyphix® or Oncoglyphix™ software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa G. Shaffer Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shaffer, L.G. (2013). Microarray-Based Cytogenetics. In: Gersen, S., Keagle, M. (eds) The Principles of Clinical Cytogenetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1688-4_18

Download citation

Publish with us

Policies and ethics