Intracranial Arterial and Venous Disease

  • Dariusch R. Hadizadeh
  • Horst Urbach
  • Winfried A. Willinek


Inflow or time-of-flight MR angiography (TOF-MRA) sequences were the first sequences that were exclusively developed to image vascular structures in various regions of the body and have been used since the early 1980s [1]. Using gradient echo sequences with very short repetition times (TR < T1) and partial flip angle techniques, the background tissue is effectively saturated and only blood that enters the imaging volume during the repetition time (and has therefore not been saturated before) is visualized. Background suppression is further enhanced by magnetization transfer contrast (MTC) [2].


Vertebral Artery Intracranial Aneurysm Autosomal Dominant Polycystic Kidney Disease Cerebral Amyloid Angiopathy Sinus Thrombosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nishimura DG. Time-of-flight MR angiography. Magn Reson Med. 1990;14:194–201.PubMedCrossRefGoogle Scholar
  2. 2.
    Balaban RS, Ceckler TL. Magnetization transfer contrast in magnetic resonance imaging. Magn Reson Q. 1992;8:116–137.PubMedGoogle Scholar
  3. 3.
    Parker DL, Yuan C, Blatter DD. MR angiography by multiple thin slab 3D acquisition. Magn Reson Med. 1991;17:434–451.PubMedCrossRefGoogle Scholar
  4. 4.
    Atkinson D, Brant-Zawadzki M, Gillan G, Purdy D, Laub G. Improved MR angiography: magnetization transfer suppression with variable flip angle excitation and increased resolution. Radiology. 1994;190:890–894.PubMedGoogle Scholar
  5. 5.
    Dumoulin CL, Yucel EK, Vock P, et al. Two- and three-dimensional phase contrast MR angiography of the abdomen. J Comput Assist Tomogr. 1990;14:779–784.PubMedCrossRefGoogle Scholar
  6. 6.
    Dumoulin CL. Phase contrast MR angiography techniques. Magn Reson Imaging Clin N Am. 1995;3:399–411.PubMedGoogle Scholar
  7. 7.
    Prince MR, Yucel EK, Kaufman JA, Harrison DC, Geller SC. Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging. 1993;3:877–881.PubMedCrossRefGoogle Scholar
  8. 8.
    Korosec FR, Frayne R, Grist TM, Mistretta CA. Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med. 1996;36:345–351.PubMedCrossRefGoogle Scholar
  9. 9.
    Huston J, III, Fain SB, Riederer SJ, Wilman AH, Bernstein MA, Busse RF. Carotid arteries: maximizing arterial to venous contrast in fluoroscopically triggered contrast-enhanced MR angiography with elliptic centric view ordering. Radiology. 1999;211:265–273.PubMedGoogle Scholar
  10. 10.
    Willinek WA, Gieseke J, Conrad R, et al. Randomly segmented central k-space ordering in high-spatial-resolution contrast-enhanced MR angiography of the supraaortic arteries: initial experience. Radiology. 2002;225:583–588.PubMedCrossRefGoogle Scholar
  11. 11.
    Willinek WA, Born M, Simon B, et al. Time-of-flight MR angiography: comparison of 3.0-T imaging and 1.5-T imaging--initial experience. Radiology. 2003;229:913–920.PubMedCrossRefGoogle Scholar
  12. 12.
    Nael K, Fenchel M, Salamon N, et al. Three-dimensional cerebral contrast-enhanced magnetic resonance venography at 3.0 Tesla: initial results using highly accelerated parallel acquisition. Invest Radiol. 2006;41:763–768.PubMedCrossRefGoogle Scholar
  13. 13.
    Tsuruda JS, Shimakawa A, Pelc NJ, Saloner D. Dural sinus occlusion: evaluation with phase-sensitive gradient-echo MR imaging. AJNR Am J Neuroradiol. 1991;12:481–488.PubMedGoogle Scholar
  14. 14.
    Carandang R, Seshadri S, Beiser A, et al. Trends in incidence, lifetime risk, severity, and 30-day mortality of stroke over the past 50 years. JAMA. 2006;296:2939–2946.PubMedCrossRefGoogle Scholar
  15. 15.
    Gold G, Kovari E, Herrmann FR, et al. Cognitive consequences of thalamic, basal ganglia, and deep white matter lacunes in brain aging and dementia. Stroke. 2005;36:1184–1188.PubMedCrossRefGoogle Scholar
  16. 16.
    Bitar R, Gladstone D, Sahlas D, Moody A. MR angiography of subclavian steal syndrome: pitfalls and solutions. AJR Am J Roentgenol. 2004;183:1840–1841.PubMedGoogle Scholar
  17. 17.
    Scott DG, Watts RA. Systemic vasculitis: epidemiology, classification and environmental factors. Ann Rheum Dis. 2000;59:161–163.PubMedCrossRefGoogle Scholar
  18. 18.
    Harris KG, Tran DD, Sickels WJ, Cornell SH, Yuh WT. Diagnosing intracranial vasculitis: the roles of MR and angiography. AJNR Am J Neuroradiol. 1994;15:317–330.PubMedGoogle Scholar
  19. 19.
    Greenan TJ, Grossman RI, Goldberg HI. Cerebral vasculitis: MR imaging and angiographic correlation. Radiology. 1992;182:65–72.PubMedGoogle Scholar
  20. 20.
    Blockmans D, Bley T, Schmidt W. Imaging for large-vessel vasculitis. Curr Opin Rheumatol. 2009;21:19–28.PubMedCrossRefGoogle Scholar
  21. 21.
    Murphy JM, Gomez-Anson B, Gillard JH, et al. Wegener granulomatosis: MR imaging findings in brain and meninges. Radiology. 1999;213:794–799.PubMedGoogle Scholar
  22. 22.
    Moriwaki R, Noda M, Yajima M, Sharma BK, Numano F. Clinical manifestations of Takayasu arteritis in India and Japan – new classification of angiographic findings. Angiology. 1997;48:369–379.PubMedGoogle Scholar
  23. 23.
    Satoh S, Shibuya H, Matsushima Y, Suzuki S. Analysis of the angiographic findings in cases of childhood moyamoya disease. Neuroradiology. 1988;30:111–119.PubMedCrossRefGoogle Scholar
  24. 24.
    Suzuki J, Takaku A. Cerebrovascular “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol. 1969;20:288–299.PubMedCrossRefGoogle Scholar
  25. 25.
    Scott RM, Smith ER. Moyamoya disease and moyamoya syndrome. N Engl J Med. 2009;360:1226–1237.PubMedCrossRefGoogle Scholar
  26. 26.
    Schievink WI. Spontaneous dissection of the carotid and vertebral arteries. N Engl J Med. 2001;344:898–906.PubMedCrossRefGoogle Scholar
  27. 27.
    Schwartz NE, Vertinsky AT, Hirsch KG, Albers GW. Clinical and radiographic natural history of cervical artery dissections. J Stroke Cerebrovasc Dis. 2009;18:416–423.PubMedCrossRefGoogle Scholar
  28. 28.
    Ozdoba C, Sturzenegger M, Schroth G. Internal carotid artery dissection: MR imaging features and clinical-radiologic correlation. Radiology. 1996;199:191–198.PubMedGoogle Scholar
  29. 29.
    Cimini N, D’Andrea P, Gentile M, et al. Cervical artery dissection: a 5-year prospective study in the Belluno district. Eur Neurol. 2004;52:207–210.PubMedCrossRefGoogle Scholar
  30. 30.
    Wilkinson IM. The vertebral artery. Extracranial and intracranial structure. Arch Neurol. 1972;27:392–396.PubMedCrossRefGoogle Scholar
  31. 31.
    Schoenberg SO, Wunsch C, Knopp MV, et al. Abdominal aortic aneurysm. Detection of multilevel vascular pathology by time-resolved multiphase 3D gadolinium MR angiography: initial report. Invest Radiol. 1999;34:648–659.PubMedCrossRefGoogle Scholar
  32. 32.
    Goyal MS, Derdeyn CP. The diagnosis and management of supraaortic arterial dissections. Curr Opin Neurol. 2009;22:80–89.PubMedCrossRefGoogle Scholar
  33. 33.
    Clarke M. Systematic review of reviews of risk factors for intracranial aneurysms. Neuroradiology. 2008;50:653–664.PubMedCrossRefGoogle Scholar
  34. 34.
    Rosenorn J, Eskesen V, Schmidt K. Unruptured intracranial aneurysms: an assessment of the annual risk of rupture based on epidemiological and clinical data. Br J Neurosurg. 1988;2:369–377.PubMedCrossRefGoogle Scholar
  35. 35.
    Weir B. Unruptured intracranial aneurysms: a review. J Neurosurg. 2002;96:3–42.PubMedCrossRefGoogle Scholar
  36. 36.
    Kaminogo M, Yonekura M, Shibata S. Incidence and outcome of multiple intracranial aneurysms in a defined population. Stroke. 2003;34:16–21.PubMedCrossRefGoogle Scholar
  37. 37.
    Juvela S, Porras M, Heiskanen O. Natural history of unruptured intracranial aneurysms: a long-term follow-up study. J Neurosurg. 1993;79:174–182.PubMedCrossRefGoogle Scholar
  38. 38.
    Brisman JL, Song JK, Newell DW. Cerebral aneurysms. N Engl J Med. 2006;355:928–939.PubMedCrossRefGoogle Scholar
  39. 39.
    Hunt WE, Hess RM. Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg. 1968;28:14–20.PubMedCrossRefGoogle Scholar
  40. 40.
    Bracard S, Lebedinsky A, Anxionnat R, et al. Endovascular treatment of Hunt and Hess grade IV and V aneuryms. AJNR Am J Neuroradiol. 2002;23:953–957.PubMedGoogle Scholar
  41. 41.
    Urbach H, Dorenbeck U, von Falkenhausen M, et al. Three-dimensional time-of-flight MR angiography at 3 T compared to digital subtraction angiography in the follow-up of ruptured and coiled intracranial aneurysms: a prospective study. Neuroradiology. 2008;50:383–389.PubMedCrossRefGoogle Scholar
  42. 42.
    Filippidis A, Kapsalaki E, Patramani G, Fountas KN. Cerebral venous sinus thrombosis: review of the demographics, pathophysiology, current diagnosis, and treatment. Neurosurg Focus. 2009;27:E3.PubMedCrossRefGoogle Scholar
  43. 43.
    Saadatnia M, Fatehi F, Basiri K, Mousavi SA, Mehr GK. Cerebral venous sinus thrombosis risk factors. Int J Stroke. 2009;4:111–123.PubMedCrossRefGoogle Scholar
  44. 44.
    de Bruijn SF, Stam J, Vandenbroucke JP. Increased risk of cerebral venous sinus thrombosis with third-generation oral contraceptives. Cerebral Venous Sinus Thrombosis Study Group. Lancet. 1998;351:1404.PubMedCrossRefGoogle Scholar
  45. 45.
    Einhaupl KM, Villringer A, Meister W, et al. Heparin treatment in sinus venous thrombosis. Lancet. 1991;338:597–600.PubMedCrossRefGoogle Scholar
  46. 46.
    Medel R, Monteith SJ, Crowley RW, Dumont AS. A review of therapeutic strategies for the management of cerebral venous sinus thrombosis. Neurosurg Focus. 2009; 27:E6.PubMedCrossRefGoogle Scholar
  47. 47.
    Allroggen H, Abbott RJ. Cerebral venous sinus thrombosis. Postgrad Med J. 2000;76:12–15.PubMedCrossRefGoogle Scholar
  48. 48.
    Lee EJ. The empty delta sign. Radiology. 2002;224:788–789.PubMedCrossRefGoogle Scholar
  49. 49.
    Leach JL, Fortuna RB, Jones BV, Gaskill-Shipley MF. Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls. Radiographics. 2006;26(Suppl 1):S19-S41.PubMedCrossRefGoogle Scholar
  50. 50.
    Moftakhar P, Hauptman JS, Malkasian D, Martin NA. Cerebral arteriovenous malformations. Part 1: cellular and molecular biology. Neurosurg Focus. 2009;26:E10.PubMedCrossRefGoogle Scholar
  51. 51.
    Al Shahi R, Warlow C. A systematic review of the frequency and prognosis of arteriovenous malformations of the brain in adults. Brain. 2001;124:1900–1926.Google Scholar
  52. 52.
    Weber F, Knopf H. Incidental findings in magnetic resonance imaging of the brains of healthy young men. J Neurol Sci. 2006;240:81–84.PubMedCrossRefGoogle Scholar
  53. 53.
    Kondziolka D, McLaughlin MR, Kestle JR. Simple risk predictions for arteriovenous malformation hemorrhage. Neurosurgery. 1995;37:851–855.PubMedCrossRefGoogle Scholar
  54. 54.
    Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg. 1986;65:476–483.PubMedCrossRefGoogle Scholar
  55. 55.
    Friedlander RM. Clinical practice. Arteriovenous malformations of the brain. N Engl J Med. 2007;356:2704–2712.PubMedCrossRefGoogle Scholar
  56. 56.
    Jones RA, Haraldseth O, Muller TB, Rinck PA, Oksendal AN. K-space substitution: a novel dynamic imaging technique. Magn Reson Med. 1993;29:830–834.PubMedCrossRefGoogle Scholar
  57. 57.
    van Vaals JJ, Brummer ME, Dixon WT, et al. “Keyhole” method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging. 1993;3:671–675.PubMedCrossRefGoogle Scholar
  58. 58.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952–962.PubMedCrossRefGoogle Scholar
  59. 59.
    Willinek WA, Hadizadeh DR, von Falkenhausen M, et al. 4D time-resolved MR angiography with keyhole (4D-TRAK): more than 60 times accelerated MRA using a combination of CENTRA, keyhole, and SENSE at 3.0T. J Magn Reson Imaging. 2008;27:1455–1460.PubMedCrossRefGoogle Scholar
  60. 60.
    Hadizadeh DR, von Falkenhausen M, Gieseke J, et al. Cerebral arteriovenous malformation: Spetzler-Martin classification at subsecond-temporal-resolution four-dimensional MR angiography compared with that at DSA. Radiology. 2008;246:205–213.PubMedCrossRefGoogle Scholar
  61. 61.
    Nussel F, Wegmuller H, Huber P. Comparison of magnetic ­resonance angiography, magnetic resonance imaging and conventional angiography in cerebral arteriovenous malformation. Neuroradiology. 1991;33:56–61.PubMedCrossRefGoogle Scholar
  62. 62.
    Morales H, Jones BV, Leach JL, Abruzzo TA. Documented development of a dural arteriovenous fistula in an infant subsequent to sinus thrombosis: case report and review of the literature. Neuroradiology. 2010;52:225–229.PubMedCrossRefGoogle Scholar
  63. 63.
    Gupta A, Periakaruppan A. Intracranial dural arteriovenous fistulas: A Review. Indian J Radiol Imaging. 2009;19:43–48.PubMedCrossRefGoogle Scholar
  64. 64.
    Cognard C, Gobin YP, Pierot L, et al. Cerebral dural arteriovenous fistulas: clinical and angiographic correlation with a revised classification of venous drainage. Radiology. 1995;194:671–680.PubMedGoogle Scholar
  65. 65.
    Smith EE, Rosand J, Greenberg SM. Imaging of hemorrhagic stroke. Magn Reson Imaging Clin N Am. 2006;14:127–40, v.Google Scholar
  66. 66.
    Chang R, Friedman DP. Isolated cortical venous thrombosis presenting as subarachnoid hemorrhage: a report of three cases. AJNR Am J Neuroradiol. 2004;25:1676–1679.PubMedGoogle Scholar
  67. 67.
    Kimber J. Cerebral venous sinus thrombosis. QJM. 2002;95:137–142.PubMedCrossRefGoogle Scholar
  68. 68.
    Dainer HM, Smirniotopoulos JG. Neuroimaging of hemorrhage and vascular malformations. Semin Neurol. 2008;28:533–547.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Dariusch R. Hadizadeh
    • 1
  • Horst Urbach
    • 1
    • 2
  • Winfried A. Willinek
    • 2
  1. 1.Department of NeuroradiologyUniversity of BonnBonnGermany
  2. 2.Department of RadiologyUniversity of BonnBonnGermany

Personalised recommendations