The Outer Layers of the Earth

  • M. VázquezEmail author
  • E. Pallé
  • P. Montañés Rodríguez
Part of the Astronomy and Astrophysics Library book series (AAL)


The outermost layers of our planet are the best laboratory for studying the interaction of their components with high-energy radiation (X- and UV rays), solar wind and cosmic rays. This tenuous layer of neutral and charged particles shields the troposphere of our planet from the effects of energetic photons and, together with the magnetosphere, the action of subatomic particles. The extremes of the electromagnetic spectrum (XUV, Radio) are the best ranges in which to observe these layers from outer space.


Solar Wind Radiation Belt International Reference Ionosphere Lower Thermosphere Earth Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Appleton, E.V.: Geophysical influences on the transmission of wireless waves. Proc. Phys. Soc. Lond. 37, D16–D22 (1924)CrossRefGoogle Scholar
  2. Aramyan, A.R., Galechyan, G.A., Harutyunyan, G.G.: Superluminescence of atomic oxygen in the upper atmosphere. Laser Phys. 19, 835–841 (2008)ADSCrossRefGoogle Scholar
  3. Assman, R.: Über die existenz eines wärmeren Luftstromes in der Höhe von 10 bis 15 km. Proc. Roy. Prussian Acad. Sci. 24, 1–10 (1902)Google Scholar
  4. Ayres, T.R.: Evolution of the solar ionizing flux. J. Geophys. Res. 102, 1641–1652 (1997)ADSCrossRefGoogle Scholar
  5. Bastian, T.S., Dulk, G.A., Leblanc, Y.: A Search for Radio Emission from Extrasolar Planets. Astrophys. J. 545, 1058–1063 (2000)ADSCrossRefGoogle Scholar
  6. Bauer, S.J.: Physics of Planetary Ionospheres. Springer (1973)Google Scholar
  7. Bedinger, J.F., Manring, E.: Emission from Sodium Vapor Ejected into the Earth’s Atmosphere at Night. J. Geophys. Res. 62, 162 (1957)CrossRefGoogle Scholar
  8. Bhardwaj, A., Elsner, R.F., Randall Gladstone, G., Cravens, T.E., Lisse, C.M., Dennerl, K., Branduardi-Raymont, G., Wargelin, B.J., Hunter Waite, J., Robertson, I., Østgaard, N., Beiersdorfer, P., Snowden, S.L., Kharchenko, V.: X-rays from solar system objects. Planet. Space Sci. 55, 1135–1189 (2007)ADSCrossRefGoogle Scholar
  9. Bilitza, D., Reinisch, B.W.: International Reference Ionosphere 2007: Improvements and new parameters. Adv. Space Res. 42, 599–609 (2008)ADSCrossRefGoogle Scholar
  10. Boeck, W.L., Vaughan Jr., O.H., Blakeslee, R., Vonnegut, B., Brook, M.: Lightning induced brightening in the airglow layer. Geophys. Res. Lett. 19, 99–102 (1992)ADSCrossRefGoogle Scholar
  11. Brasseur, G., Solomom, S.: Aeronomy of the Middle Atmosphere. D. Reidel, Dordrecht (1994)Google Scholar
  12. Breit, G., Tuve, M.A.: A Test of the Existence of the Conducting Layer. Phys. Rev. 28, 554–575 (1926)ADSCrossRefGoogle Scholar
  13. Brittain, S.D., Rettig, T.W.: CO and H3 + in the protoplanetary disk around the star HD141569. Nature 418, 57–59 (2002)ADSCrossRefGoogle Scholar
  14. Burch, J.L.: IMAGE mission overview. Space Sci. Rev. 91, 1–14 (2000)ADSCrossRefGoogle Scholar
  15. Burke, B.F., Franklin, K.L.: Observations of a variable radio source associaetd with the planet Jupiter. J. Geophys. Res. 60, 213–217 (1955)ADSCrossRefGoogle Scholar
  16. Carpenter, D.L.: Whistler Evidence of a ‘Knee’ in the Magnetospheric Ionization Density Profile. J. Geophys. Res. 68, 1675–1682 (1963)MathSciNetADSCrossRefGoogle Scholar
  17. Carruthers, G.R., Page, T., Meier, R.R.: Apollo 16 Lyman alpha imagery of the hydrogen geocorona. J. Geophys. Res. 81, 1664–1672 (1976)ADSCrossRefGoogle Scholar
  18. Catling, D.C.: Comment on “A Hydrogen-Rich Early Earth Atmosphere”. Science 311, 38 (2006)CrossRefGoogle Scholar
  19. Chakrabarti, S., Paresce, F., Bowyer, S., Kimble, R., Kumar, S.: The extreme ultraviolet day airglow. J. Geophys. Res. 88, 4898–4904 (1983)ADSCrossRefGoogle Scholar
  20. Chamberlain, J.W.: The Ultraviolet Airglow Spectrum. Astrophys. J. 121, 277–286 (1955)ADSCrossRefGoogle Scholar
  21. Chamberlain, J.W.: Physics of the Aurora and Airglow. Academic Press, London (1961)Google Scholar
  22. Chamberlain, J.W.: Physics of the Aurora and Airglow. American Geophysical Union (1995)Google Scholar
  23. Chapman, S.: A theory of upper-atmosphere ozone. Mem. Roy. Meteorol. Soc. 3, 103–125 (1930)Google Scholar
  24. Chapman, S.: The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth. Proc. Phys. Soc. 43, 26–45 (1931)zbMATHADSCrossRefGoogle Scholar
  25. Chapman, S.: Notes on Atmospheric Sodium. Astrophys. J. 90, 309–316 (1939)ADSCrossRefGoogle Scholar
  26. Christie, M.: The Ozone layer. Cambridge University Press, Cambridge (2000)Google Scholar
  27. Churazov, E., Sazonov, S., Sunyaev, R., Revnivtsev, M.: Earth X-ray albedo for cosmic X-ray background radiation in the 1-1000 keV band. Mon. Not. Roy. Astron. Soc. 385, 719–727 (2008)ADSCrossRefGoogle Scholar
  28. Cnossen, I., Sanz-Forcada, J., Favata, F., Witasse, O., Zegers, T., Arnold, N.F.: Habitat of early life: Solar X-ray and UV radiation at Earth’s surface 4-3.5 billion years ago. J. Geophys. Res. E 112(11), (2008); (2007)Google Scholar
  29. Craven, J.D., Nicholas, A.C., Frank, L.A., Strickland, D.J., Immel, T.J.: Variations in the FUV dayglow after intense auroral activity. Geophys. Res. Lett. 21, 2793–2796 (1994)ADSCrossRefGoogle Scholar
  30. Davis, C.J., Johnson, C.G.: Lightning-induced intensification of the ionospheric sporadic E-layer. Nature 435, 799–801 (2005)ADSCrossRefGoogle Scholar
  31. de Keyser, J., Carpenter, D.L., Darrouzet, F., Gallagher, D.L., Tu, J.: CLUSTER and IMAGE: New Ways to Study the Earth’s Plasmasphere. Space Sci. Rev. 145, 7–53 (2009)ADSCrossRefGoogle Scholar
  32. Desch, M.D., Kaiser, M.L.: Predictions for Uranus from a radiometric Bode’s law. Nature 310, 755–757 (1984)ADSCrossRefGoogle Scholar
  33. Dessler, A.E.: The Chemistry and Physics of Atmospheric Ozone. Academic Press, London (2000)Google Scholar
  34. Dickinson, R.E.: Effects of solar electromagnetic radiation on the terrestrial environment. In: Physics of the Sun, pp. 155–191. D. Reidel (1986)Google Scholar
  35. Dobson, G.: Forty years research on atmospheric ozone at Oxford. Appl. Optic. 7, 387–345 (1968)ADSCrossRefGoogle Scholar
  36. Drossart, P., Maillard, J.P., Caldwell, J., Kim, S.J., Watson, J.K.G., Majewski, W.A., Tennyson, J., Miller, S., Atreya, S.K., Clarke, J.T., Waite, J.H., Wagener, R.: Detection of H3( + ) on Jupiter. Nature 340, 539–541 (1989)ADSCrossRefGoogle Scholar
  37. Dunckel, N., Ficklin, B., Rorden, L., Helliwell, R.A.: Low-frequency noise observed in the distant magnetosphere with OGO 1. J. Geophys. Res. 75, 1854–1862 (1970)ADSCrossRefGoogle Scholar
  38. Feldman, P.D., McNutt, D.P.: Far infrared nightglow emission from atomic oxygen. J. Geophys. Res. 74, 4791–4793 (1969)ADSCrossRefGoogle Scholar
  39. Feldman, P.D., Sahnow, D.J., Kruk, J.W., Murphy, E.M., Moos, H.W.: High-resolution FUV spectroscopy of the terrestrial day airglow with the Far Ultraviolet Spectroscopic Explorer. J. Geophys. Res. 106, 8119–8130 (2001)ADSCrossRefGoogle Scholar
  40. Fowler, A., Strutt, R.J.: Absorption Bands of Atmospheric Ozone in the Spectra of Sun and Stars. Roy. Soc. Lond. Proc. A 93, 577–586 (1917)ADSCrossRefGoogle Scholar
  41. Franz, R.C., Nemzek, R.J., Winckler, J.R.: Television Image of a Large Upward Electrical Discharge Above a Thunderstorm System. Science 249, 48–51 (1990)ADSCrossRefGoogle Scholar
  42. Geballe, T.R., Jagod, M.F., Oka, T.: Detection of H3( + ) infrared emission lines in Saturn. Astrophys. J. 408, L109–L112 (1993)ADSCrossRefGoogle Scholar
  43. Giménez, A., Sabau-Graziati, L.: The Spanish MINISAT-01 mission. Memor. Soc. Astronom. Ital. 67, 563–568 (1996)ADSGoogle Scholar
  44. Goto, M., Geballe, T.R., McCall, B.J., Usuda, T., Suto, H., Terada, H., Kobayashi, N., Oka, T.: Search for H3+ in HD 141569A. Astrophys. J. 629, 865–872 (2005)ADSCrossRefGoogle Scholar
  45. Gottfried, J.L., McCall, B.J., Oka, T.: Near-infrared spectroscopy of H3+ above the barrier of linearity. J. Chem. Phys. 118, 10,890–10,899 (2003)CrossRefGoogle Scholar
  46. Greer, R.G.H., Murtagh, D.P., McDade, I.C., Dickinson, P.H.G., Thomas, L., Nishhizumi, K.: ETON 1 – A data base pertinent to the study of energy transfer in the oxygen nightglow. Planet. Space Sci. 34, 771–788 (1986)ADSCrossRefGoogle Scholar
  47. Güdel, M.: The Sun in Time: Activity and Environment. Living Rev. Sol. Phys. 4 (2007)Google Scholar
  48. Gurnett, D.A.: The earth as a radio source: terrestrial kilometric radiation. J. Geophys. Res. 79, 4227–4238 (1974)ADSCrossRefGoogle Scholar
  49. Gurnett, D.A., Kurth, W.S., Hospodarsky, G.B., Persoon, A.M., Averkamp, T.F., Cecconi, B., Lecacheux, A., Zarka, P., Canu, P., Cornilleau-Wehrlin, N., Galopeau, P., Roux, A., Harvey, C., Louarn, P., Bostrom, R., Gustafsson, G., Wahlund, J.E., Desch, M.D., Farrell, W.M., Kaiser, M.L., Goetz, K., Kellogg, P.J., Fischer, G., Ladreiter, H.P., Rucker, H., Alleyne, H., Pedersen, A.: Radio and Plasma Wave Observations at Saturn from Cassini’s Approach and First Orbit. Science 307, 1255–1259 (2005)ADSCrossRefGoogle Scholar
  50. Hargreaves, J.K.: The upper atmosphere and Solar-terrestrial relations. Van Nostrand Reinhold (1979)Google Scholar
  51. Harris, M.J.: A new coupled terrestrial mesosphere-thermosphere general circulation model: Studies of dynamic, energetic, and photochemical coupling in the middle and upper atmosphere. PhD Thesis, University of London (2001)Google Scholar
  52. Heppner, J.P., Meredith, L.H.: Nightglow Emission Altitude From Rocket Measurements. J. Geophys. Res. 63, 51–65 (1958)ADSCrossRefGoogle Scholar
  53. Herzberg, G.: Molecular Spectra and Molecular Structure. I.- Spectra of Diatomic Molecules. Prentice Hall Inc., New York (1939)Google Scholar
  54. Herzberg, G.: Molecular Spectra and Molecular Structure. II.- Infrared and Raman Spectra of Polyatomic Molecules. Van Nostrand Co., New York (1945)Google Scholar
  55. Herzberg, G.: Molecular Spectra and Molecular Structure. III.- Electronic Spectra and Electronic Structure of Polyatomic Molecules. Van Nostrand Co., New York (1966)Google Scholar
  56. Holzwarth, V., Jardine, M.: Theoretical mass loss rates of cool main-sequence stars. Astron. Astrophys. 463, 11–21 (2007)zbMATHADSCrossRefGoogle Scholar
  57. Huff, R.L., Calvert, W., Craven, J.D., Frank, L.A., Gurnett, D.A.: Mapping of auroral kilometric radiation sources to the aurora. J. Geophys. Res. 93, 11,445–11,454 (1988)ADSCrossRefGoogle Scholar
  58. Hulburt, E.O.: Ionization in the Upper Atmosphere of the Earth. Phys. Rev. 31, 1018–1037 (1928)ADSCrossRefGoogle Scholar
  59. Hunsucker, R.D., Hargreaves, J.K.: The High-latitude ionosphere and its Effects on Radio Propagation. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  60. Jansky, K.G.: Electrical disturbances apparently of extraterrestrial origin. Proc. IRE 21, 1387–1398 (1933)CrossRefGoogle Scholar
  61. Kaiser, M.L., Desch, M.D., Lecacheux, A.: Saturnian kilometric radiation - Statistical properties and beam geometry. Nature 292, 731–733 (1981)ADSCrossRefGoogle Scholar
  62. Kelley, M.C.: The Earth’ s Ionosphere: Plasma Physics and Electrodynamics. Academic Press, London (1989)Google Scholar
  63. Khomich, V.Y., Semenov, A.I., Shefov, N.N.: Airglow as an indicator of Upper atmospheric structure and dynamics. Springer (2008)Google Scholar
  64. Kloosterman, J.L., Dunn, D.E., de Pater, I.: Jupiter’s Synchrotron Radiation Mapped with the Very Large Array from 1981 to 1998. Astrophys. J. Suppl. 161, 520–550 (2005)ADSCrossRefGoogle Scholar
  65. Koomen, M.J., Scolnik, R., Tousey, R.: Measurements of the night airglow from a rocket. Astron. J. 61, 182–182 (1956)CrossRefGoogle Scholar
  66. Kopp, E.: On the abundance of metal ions in the lower ionosphere. J. Geophys. Res. 102, 9667–9674 (1997)ADSCrossRefGoogle Scholar
  67. Koskinen, T.T., Aylward, A.D., Miller, S.: A stability limit for the atmospheres of giant extrasolar planets. Nature 450, 845–848 (2007)ADSCrossRefGoogle Scholar
  68. Kulikov, Y.N., Lammer, H., Lichtenegger, H.I.M., Penz, T., Breuer, D., Spohn, T., Lundin, R., Biernat, H.K.: A Comparative Study of the Influence of the Active Young Sun on the Early Atmospheres of Earth, Venus, and Mars. Space Sci. Rev. 129, 207–243 (2007)ADSCrossRefGoogle Scholar
  69. López-Moreno, J.J., Morales, C., Gómez, J.F., Trapero, J., Bowyer, S., Edelstein, J., Lampton, M., Korpela, E.J.: EURD observations of EUV nightime airglow lines. Geophys. Res. Lett. 25, 2937–2940 (1998)ADSCrossRefGoogle Scholar
  70. Laughlin, L., Troutman, M.R., Brittain, S., Rettig, T.W.: Investigation of H3 + Emission from Exoplanet Tau Boo. In: American Astronomical Society Meeting Abstracts, vol. 212, p. 10.11 (2008)Google Scholar
  71. Lellouch, E.: Spectro-imaging observations of H3 + on Jupiter. Phil. Trans. Roy. Soc. Lond. A 364, 3139–3146 (2006)ADSCrossRefGoogle Scholar
  72. Lemaire, J.F., Gringauz, K.I.: The Earth’s Plasmasphere. Cambridge University Press, London (1998)CrossRefGoogle Scholar
  73. Lindemann, F.: On the Solar Wind. Phil. Mag. 38, 674 (1919)Google Scholar
  74. Lindemann, F., Dobson, G.: A theory of Meteors, and the Density and Temperature of the Outer Atmosphere to which it Leads. Proc. Roy. Soc. Lond. Ser. A 102, 411–437 (1922)ADSGoogle Scholar
  75. Link, R., Gladstone, G.R., Chakrabarti, S., McConnell, J.C.: A reanalysis of rocket measurements of the ultraviolet dayglow. J. Geophys. Res. 93, 14,631–14,648 (1988)ADSGoogle Scholar
  76. Llewellyn, E.J., Solheim, B.H.: The excitation of the infrared atmospheric oxygen bands in the nightglow. Planet. Space Sci. 26, 533–538 (1978)ADSCrossRefGoogle Scholar
  77. McLennan, J.C., Shrum, G.M.: On the origin of the auroral green line 5577 - and other associated with aurora borealis. Proc. Roy. Soc. Lond. A 108, 501 (1925)ADSCrossRefGoogle Scholar
  78. McCormack, B.M. (ed.): The radiating atmosphere (1971)Google Scholar
  79. McCulloch, P.M.: Interpretation of the radio rotation period of Jupiter in terms of the cyclotron theory. Aust. J. Phys. 21, 409–413 (1968)ADSGoogle Scholar
  80. McGovern, W.E.: The Primitive Earth: Thermal Models of the Upper Atmosphere for a Methane-Dominated Environment. J. Atmos. Sci. 26, 623–635 (1969)ADSCrossRefGoogle Scholar
  81. Meier, R.R., Warren, H.P., Nicholas, A.C., Bishop, J., Huba, J.D., Drob, D.P., Lean, J.L., Picone, J.M., Mariska, J.T., Joyce, G., Judge, D.L., Thonnard, S.E., Dymond, K.F., Budzien, S.A.: Ionospheric and dayglow responses to the radiative phase of the Bastille Day flare. Geophys. Res. Lett. 29, 99–1 (2002)CrossRefGoogle Scholar
  82. Milikh, G., Valdivia, J.A., Papadopoulos, K.: Spectrum of red sprites. J. Atmos. Sol. Terr. Phys. 60, 907–915 (1998)ADSCrossRefGoogle Scholar
  83. Mlynczak, M.G., Martin-Torres, F.J., Marshall, B.T., Thompson, R.E., Williams, J., Turpin, T., Kratz, D.P., Russell, J.M., Woods, T., Gordley, L.L.: Evidence for a solar cycle influence on the infrared energy budget and radiative cooling of the thermosphere. J. Geophys. Res. A 112(11), 12,302 (2007)Google Scholar
  84. Müller-Wodarg, I.: Planetary upper atmospheres, pp. 331–353. Imperial College Press, London (2005)Google Scholar
  85. Nagano, I., Yagitani, S., Miyamura, K., Makino, S.: Full-wave analysis of elves created by lightning-generated electromagnetic pulses. J. Atmos. Sol. Terr. Phys. 65, 615–625 (2003)ADSCrossRefGoogle Scholar
  86. Nagy, A.F., Cravens, T.E.: Solar System Ionospheres, AGU Geophysical Monograph Series, Vol. 130, pp. 39 (2002)Google Scholar
  87. Newcomb, S.: A Rude Attempt to Determine the Total Light of all the Stars. Astrophys. J. 14, 297–312 (1901)ADSCrossRefGoogle Scholar
  88. Nilsson, H., Waara, M., Marghitu, O., Yamauchi, M., Lundin, R., Rème, H., Sauvaud, J.A., Dandouras, I., Lucek, E., Kistler, L.M., Klecker, B., Carlson, C.W., Bavassano-Cattaneo, M.B., Korth, A.: An assessment of the role of the centrifugal acceleration mechanism in high altitude polar cap oxygen ion outflow. Ann. Geophys. 26, 145–157 (2008)ADSCrossRefGoogle Scholar
  89. Offerman, D., Conway, R.R.: Mission studies the composition of Earth’s middle atmosphere. EOS Trans. 76, 337 (1995)ADSCrossRefGoogle Scholar
  90. Oka, T., Geballe, T.R.: Observations of the 4 micron fundamental band of H3( + ) in Jupiter. Astrophys. J. 351, L53–L56 (1990)ADSCrossRefGoogle Scholar
  91. Osterbrock, D.E., Fulbright, J.P., Cosby, P.C., Barlow, T.A.: Faint OH (nu’ = 10), 17OH, and 18OH Emission Lines in the Spectrum of the Night Airglow. Publ. Astron. Soc. Pac. 110, 1499–1510 (1998)ADSCrossRefGoogle Scholar
  92. Pallé, E., Zapatero Osorio, M.R., Barrena, R., Montañés Rodríguez, P., Martin, E.L.: Earth’s transmission spectrum from lunar eclipse observations. Nature 459, 814–816 (2009)ADSCrossRefGoogle Scholar
  93. Pasko, V.P.: Blue jets and gigantic jets: transient luminous events between thunderstorm tops and the lower ionosphere. Plasma Phys. Contr. Fusion 50(12), 124,050 (2008)ADSCrossRefGoogle Scholar
  94. Radhakrishnan, V., Roberts, J.A.: Polarization and Angular Extent of the 960-Mc/sec Radiation from Jupiter. Phys. Rev. Lett. 4, 493–494 (1960)ADSCrossRefGoogle Scholar
  95. Reber, G.: Cosmic Static. Astrophys. J. 100, 279–287 (1944)ADSCrossRefGoogle Scholar
  96. Ribas, I., Guinan, E.F., Güdel, M., Audard, M.: Evolution of the Solar Activity over Time and Effects on Planetary Atmospheres. I. High-Energy Irradiances (1-1700 Å). Astrophys. J. 622, 680–694 (2005)ADSCrossRefGoogle Scholar
  97. Richmond, A.D.: The Ionosphere. In: The Solar Wind and the Earth, Reidel, D. pp. 123–140 (1987)Google Scholar
  98. Rishbeth, H., Garriott, O.K.: Introduction to Ionospheric Physics. Academic Press, (1969)Google Scholar
  99. Roach, F.E., Gordon, J.L.: The Light of the Night Sky. D. Reidel (1973)Google Scholar
  100. Rodgers, C.D., Walshaw, C.D.: The computation of infrared cooling rate in planetary atmospheres. Q. J. Roy. Meteorol. Soc. 92, 67–92 (2006)ADSCrossRefGoogle Scholar
  101. Rucker, H.O., Bauer, S.J., Pedersen, B.M. (eds.): Planetary radio emissions II. Aust. Acad. Sci. (1988)Google Scholar
  102. Rycroft, M.J., Harrison, R.G., Nicoll, K.A., Mareev, E.A.: An Overview of Earth’s Global Electric Circuit and Atmospheric Conductivity. Space Sci. Rev. 137, 83–105 (2008)ADSCrossRefGoogle Scholar
  103. Sawyer, C., Warwick, J.W., Romig, J.H.: Smooth radio emission and a new emission at Neptune. Geophys. Res. Lett. 17, 1645–1648 (1990)ADSCrossRefGoogle Scholar
  104. Scharringhausen, M., Aikin, A.C., Burrows, J.P., Sinnhuber, M.: Space borne measurements of mesospheric magnesium species - a retrieval algorithm and preliminary profiles. Atmos. Chem. Phys. 8, 1963–1983 (2008)ADSCrossRefGoogle Scholar
  105. Shokolov, V.S.: H3 + in the Upper Atmosphere of Venus. Astronomicheskij Tsirkulyar 1174, 3 (1981)ADSGoogle Scholar
  106. Siingh, D., Gopalakrishnan, V., Singh, R.P., Kamra, A.K., Singh, S., Pant, V., Singh, R., Singh, A.K.: The atmospheric global electric circuit: An overview. Atmos. Res. 84, 91–110 (2007)CrossRefGoogle Scholar
  107. Slanger, T.G., Wolven, B.C.: Airglow Processes in Planetary Atmospheres. In: Atmospheres in the Solar System: Comparative Aeronomy, pp. 77– (2002)Google Scholar
  108. Slipher, V.M.: Emissions of the spectrum of the night sky. Popular Astron. 37, 327–328 (1929)ADSGoogle Scholar
  109. Stewart, B.: On the Cause of the Solar-Diurnal Variations of Terrestrial Magnetism. Proc. Phys. Soc. Lond. 8, 38–49 (1886)CrossRefGoogle Scholar
  110. Strickland, D.J., Lean, J.L., Meier, R.R., Christensen, A.B., Paxton, L.J., Morrison, D., Craven, J.D., Walterscheid, R.L., Judge, D.L., McMullin, D.R.: Solar EUV irradiance variability derived from terrestrial far ultraviolet dayglow observations. Geophys. Res. Lett. 31, 3801 (2004)CrossRefGoogle Scholar
  111. Strutt, R.: The aurora line in the spectrum of the nightsky. Proc. Roy. Soc. A 100, 366 (1922)Google Scholar
  112. Teisserenc de Bort, L.P.: Variations de la température de l ́air libre dans la zone comprise entre 8 et 13 km altitude. Compt. Rendus Acad. Sci. Paris 134, 987–989 (1902)Google Scholar
  113. Thompson, D.J., Simpson, G.A., Ozel, M.E.: SAS 2 observations of the earth albedo gamma radiation above 35 MeV. J. Geophys. Res. 86, 1265–1270 (1981)ADSCrossRefGoogle Scholar
  114. Tian, F., Toon, O.B., Pavlov, A.A., De Sterck, H.: A Hydrogen-Rich Early Earth Atmosphere. Science 308, 1014–1017 (2005)ADSCrossRefGoogle Scholar
  115. Troutman, M.R.: Searching for H + 3 in the atmosphere of the exoplanet HD 209458b. Master’s thesis, Clemson University, USA (2007)Google Scholar
  116. Vaquero, J.M., Vázquez, M.: The Sun recorded through History. Springer, Berlin (2009)Google Scholar
  117. Vaughan, O.H.: NASA shuttle lightning research: observations of nocturnal thunderstorms and lightning displays as seen during recent space shuttle missions. In: J. Wang, P.B. Hays (eds.) Proc. SPIE Vol. 2266, p. 395-403, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol. 2266, pp. 395–403 (1994)Google Scholar
  118. Vázquez, M., Hanslmeier, A.: Ultraviolet Radiation in the Solar System, Astrophysics and Space Science Library, vol. 331. Springer (2005)Google Scholar
  119. Warwick, J.W., Evans, D.R., Romig, J.H., Sawyer, C.B., Desch, M.D., Kaiser, M.L., Alexander, J.K., Gulkis, S., Poynter, R.L.: Voyager 2 radio observations of Uranus. Science 233, 102–106 (1986)ADSCrossRefGoogle Scholar
  120. Werner, S., Keller, H.U., Korth, A., Lauche, H.: UVIS/HDAC Lyman-α observations of the geocorona during Cassini’s Earth swingby compared to model predictions. Adv. Space Res. 34, 1647–1649 (2004)ADSCrossRefGoogle Scholar
  121. Whipple, F.: The Propagation to great Distances of Airwaves from Gunfire. Progress of the Investigation during 1931. Q. J. Roy. Meteorol. Soc. 63, 471–478 (1932)Google Scholar
  122. Wilson, C.T.: The electric field of a thundercloud and some of its effects. Proc. Phys. Soc. Lond. 37, 32–37 (1925)Google Scholar
  123. Winglee, R.M., Dulk, G.A., Bastian, T.S.: A search for cyclotron maser radiation from substellar and planet-like companions of nearby stars. Astrophys. J. 309, L59–L62 (1986)ADSCrossRefGoogle Scholar
  124. Wood, B.E., Müller, H.R., Zank, G.P., Linsky, J.L., Redfield, S.: New Mass-Loss Measurements from Astrospheric Lyα Absorption. Astrophys. J. 628, L143–L146 (2005)ADSCrossRefGoogle Scholar
  125. Yntema, Y.L.: On the brightness of the sky and total amount of starlight. Publications Kapteyn Astronomical Laboratory Groningen 22, 1–55 (1909)ADSGoogle Scholar
  126. Zahnle, K.J., Walker, J.C.G.: The evolution of solar ultraviolet luminosity. Rev. Geophys. Space Phys. 20, 280–292 (1982)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • M. Vázquez
    • 1
    Email author
  • E. Pallé
    • 1
  • P. Montañés Rodríguez
    • 1
  1. 1.Instituto de Astrofísica de CanariasTenerifeSpain

Personalised recommendations